| 12
 3
 4
 5
 6
 7
 8
 9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 
 | from __future__ import print_function
 from __future__ import absolute_import
 from __future__ import division
 from __future__ import unicode_literals
 from __future__ import generators
 from __future__ import with_statement
 
 import re
 from bs4 import BeautifulSoup
 from concurrent import futures
 import os
 import sys
 import time
 import pandas as pd
 import requests
 import json
 import shutil
 from fake_useragent import UserAgent
 
 
 HEADERS = dict()
 
 NUM_THREADS = 5
 
 city_dict = {
 "成都": "cd",
 "北京": "bj",
 "上海": "sh",
 "广州": "gz",
 "深圳": "sz",
 "南京": "nj",
 "合肥": "hf",
 "杭州": "hz",
 }
 
 
 PRINT = False
 
 ua = UserAgent()
 
 
 PROXY_HOST = "proxy.abuyun.com"
 PROXY_PORT = "9020"
 PROXY_USERNAME = 'XXXXXXXXXXXXXXXX'
 PROXY_PASSWORD = 'KKKKKKKKKKKKKKKK'
 
 def gen_proxies_from_cert(proxy_user, proxy_password):
 proxy_meta = "http://%(user)s:%(pass)s@%(host)s:%(port)s" % {
 "host" : PROXY_HOST,
 "port" : PROXY_PORT,
 "user" : proxy_user,
 "pass" : proxy_password
 }
 
 proxies = {
 "http"  : proxy_meta,
 "https" : proxy_meta
 }
 
 return proxies
 
 abuyun_proxies = gen_proxies_from_cert(PROXY_USERNAME, PROXY_PASSWORD)
 
 
 
 
 proxies = None
 
 
 """ HTTP GET 操作封装 """
 def get_bs_obj_from_url(http_url):
 done = False
 exception_time = 0
 HEADERS["User-Agent"] = ua.random
 while not done:
 try:
 if PRINT:
 print("正在获取 {}".format(http_url))
 r = requests.get(http_url, headers=HEADERS, proxies=proxies)
 bs_obj = BeautifulSoup(r.text, "html.parser")
 done = True
 except Exception as e:
 if PRINT:
 print(e)
 exception_time += 1
 time.sleep(1)
 if exception_time > 10:
 return None
 return bs_obj
 
 """ 判断一个字符串是否可以转成数字 """
 def is_number(s):
 try:
 float(s)
 return True
 except ValueError:
 return False
 
 
 """ 获取城市的行政区域列表 """
 def get_district_from_city(city):
 print("********** 获取城市的行政区域: {} **********".format(city))
 city_url = "http://{}.lianjia.com".format(city)
 http_url = city_url + "/xiaoqu"
 bs_obj = get_bs_obj_from_url(http_url)
 
 parent_div = bs_obj.find("div", {"data-role": "ershoufang"})
 a_list = parent_div.find_all("a")
 
 district_list = [a.attrs["href"].replace("/xiaoqu/", "")[:-1]
 for a in a_list
 if a.attrs['href'].startswith("/xiaoqu")]
 
 print("########## 总共 {} 个行政区域 ##########".format(len(district_list)))
 
 return district_list
 
 
 """ 获取一个行政区域的所有小区ID列表 """
 def get_xiaoqu_from_district(city, district):
 xiaoqu_list = []
 http_url = "http://{}.lianjia.com/xiaoqu/{}".format(city, district)
 exception_time = 0
 done = False
 while not done:
 try:
 bs_obj = get_bs_obj_from_url(http_url)
 total_pages = int(json.loads(bs_obj.find("div", {"class": "page-box house-lst-page-box"}).attrs["page-data"])["totalPage"])
 total_xiaoqu_num = int(bs_obj.find("h2", {"class": "total fl"}).find("span").get_text())
 done = True
 except Exception as e:
 exception_time += 1
 if exception_time > 10:
 return xiaoqu_list
 
 with futures.ThreadPoolExecutor(max_workers=NUM_THREADS) as executor:
 future_list = []
 for page_no in range(1, total_pages + 1):
 future_list.append(executor.submit(get_xiaoqu_in_page, city, district, page_no))
 fail_list = []
 count = 0
 for future in futures.as_completed(future_list):
 page_no, xiaoqu_list_partial = future.result()
 if xiaoqu_list_partial is None or len(xiaoqu_list_partial) == 0:
 fail_list.append(page_no)
 else:
 xiaoqu_list += xiaoqu_list_partial
 count += 1
 sys.stdout.write("\r当前行政区域 {} 已完成: {}/{}".format(
 district, count, total_pages))
 for page_no in fail_list:
 _, xiaoqu_list_partial = get_xiaoqu_in_page(city, district, page_no)
 if xiaoqu_list_partial is not None and len(xiaoqu_list_partial) > 0:
 xiaoqu_list += xiaoqu_list_partial
 count += 1
 sys.stdout.write("\r当前行政区域 {} 已完成: {}/{}".format(
 district, count, total_pages))
 print("")
 return xiaoqu_list
 
 
 """ 获取一个行政区域某一页的小区列表 """
 def get_xiaoqu_in_page(city, district, page_no):
 http_url = "http://{}.lianjia.com/xiaoqu/{}/pg{}".format(city, district, page_no)
 bs_obj = get_bs_obj_from_url(http_url)
 
 if bs_obj is None:
 return None
 
 parent_list = bs_obj.find_all("li", {"class": "clear xiaoquListItem"})
 
 xiaoqu_list = []
 
 if not (len(parent_list) == 0):
 for li in parent_list:
 xiaoqu_url = str(li.find("div", {"class": "title"}).find("a").attrs["href"])
 xiaoqu_id = "".join(list(filter(str.isdigit, xiaoqu_url)))
 xiaoqu_list.append(xiaoqu_id)
 return page_no, xiaoqu_list
 
 
 """ 获取一个城市的所有小区ID列表 """
 def get_xiaoqu_of_city(city):
 district_list = get_district_from_city(city)
 xiaoqu_list = []
 for district in district_list:
 xiaoqu_of_district = get_xiaoqu_from_district(city, district)
 xiaoqu_list += xiaoqu_of_district
 print("****** 当前行政区域 {} 的小区数: {}, 总小区数: {} ******".format(
 district, len(xiaoqu_of_district), len(xiaoqu_list)))
 return xiaoqu_list
 
 
 """ 根据小区ID获取小区详细信息 """
 def get_xiaoqu_info(city, xiaoqu_id):
 http_url = "http://{}.lianjia.com/xiaoqu/{}".format(city, xiaoqu_id)
 bs_obj = get_bs_obj_from_url(http_url)
 
 df = pd.DataFrame()
 
 if bs_obj is not None:
 try:
 location_list = bs_obj.find("div", {"class": "fl l-txt"}).find_all("a")
 info_city = location_list[1].get_text().replace("小区", "")
 info_district = location_list[2].get_text().replace("小区", "")
 info_area = location_list[3].get_text().replace("小区", "")
 info_name = location_list[4].get_text()
 
 if bs_obj.find("span", {"class": "xiaoquUnitPrice"}) is not None:
 info_price = bs_obj.find("span", {"class": "xiaoquUnitPrice"}).get_text()
 else:
 info_price = "暂无报价"
 
 info_address = bs_obj.find("div", {"class": "detailDesc"}).get_text()
 
 info_list = bs_obj.find_all("span", {"class": "xiaoquInfoContent"})
 info_year = info_list[0].get_text().replace("年建成", "")
 info_type = info_list[1].get_text()
 info_property_fee = info_list[2].get_text()
 info_property_company = info_list[3].get_text()
 info_developer_company = info_list[4].get_text()
 info_building_num = info_list[5].get_text().replace("栋", "")
 info_house_num = info_list[6].get_text().replace("户", "")
 
 df = pd.DataFrame(data=[[xiaoqu_id, http_url, info_name, info_city,
 info_district, info_area, info_price, info_year,
 info_building_num, info_house_num, info_developer_company, info_property_fee,
 info_property_company, info_type, info_address]],
 columns=["ID", "URL", "小区名称", "城市",
 "区域", "片区", "参考均价", "建筑年代",
 "总栋数", "总户数", "开发商","物业费",
 "物业公司", "建筑类型", "地址"])
 except Exception as e:
 print("[E]: get_xiaoqu_info, xiaoqu_id =", xiaoqu_id, e)
 
 return xiaoqu_id, df
 
 
 """ 根据城市和小区ID列表,获取所有小区的详细信息 """
 def get_xiaoqu_info_from_xiaoqu_list(city, xiaoqu_list):
 df_xiaoqu_info = pd.DataFrame()
 count = 0
 pct = 0
 
 with futures.ThreadPoolExecutor(max_workers=NUM_THREADS) as executor:
 future_list = []
 for xiaoqu in xiaoqu_list:
 future_list.append(executor.submit(get_xiaoqu_info, city, xiaoqu))
 fail_list = []
 print(" ")
 for future in futures.as_completed(future_list):
 xiaoqu, df_info_partial = future.result()
 if len(df_info_partial) == 0:
 fail_list.append(xiaoqu)
 else:
 df_xiaoqu_info = df_xiaoqu_info.append(df_info_partial)
 count += 1
 sys.stdout.write("\r获取小区信息: {}/{}".format(count, len(xiaoqu_list)))
 for xiaoqu in fail_list:
 _, df_info_partial = get_xiaoqu_info(city, xiaoqu)
 if len(df_info_partial) > 0:
 df_xiaoqu_info = df_xiaoqu_info.append(df_info_partial)
 count += 1
 sys.stdout.write("\r获取小区信息: {}/{}".format(count, len(xiaoqu_list)))
 
 return df_xiaoqu_info
 
 """ 获取小区成交记录的某一页的内容 """
 def get_xiaoqu_transactions_in_page(city, xiaoqu_id, page_no):
 http_url = "http://{}.lianjia.com/chengjiao/pg{}c{}/".format(city, page_no, xiaoqu_id)
 
 df = pd.DataFrame(columns=["小区ID", "小区名称", "行政区域", "片区", "户型",
 "建筑面积", "成交价", "挂牌价", "单价",
 "成交周期", "成交日期", "成交渠道", "朝向", "装修",
 "电梯", "楼层", "总楼层", "建筑年份", "建筑类型",
 "是否满二满五"])
 
 done = False
 try_time = 0
 while not done:
 try:
 district = str(df_xiaoqu_info.loc[xiaoqu_id, '区域']) if xiaoqu_id in df_xiaoqu_info.index else ""
 district = district.values[0] if type(district) == pd.core.series.Series else district
 region = str(df_xiaoqu_info.loc[xiaoqu_id, '片区']) if xiaoqu_id in df_xiaoqu_info.index else ""
 region = region.values[0] if type(region) == pd.core.series.Series else region
 bs_obj = get_bs_obj_from_url(http_url)
 div_list = bs_obj.find_all("div", {"class": "info"})
 
 for div in div_list:
 div_title = div.find("div", {"class": "title"}).find("a")
 url = div_title.attrs["href"]
 
 trans_id = url[url.rfind('/')+1:url.rfind('.')]
 title_strs = div_title.get_text().split(" ")
 
 xiaoqu_name = title_strs[0]
 
 house_type = title_strs[1]
 
 built_area = title_strs[2].replace("平米", "")
 built_area = float(built_area) if is_number(built_area) else built_area
 
 house_info_strs = div.find("div", {"class": "houseInfo"}).get_text().replace(" ", "").split("|")
 
 direction = house_info_strs[0].strip()
 
 decoration = house_info_strs[1].replace(" ", "").strip()
 
 elevator = house_info_strs[2].strip().replace("电梯", "") if len(house_info_strs) == 3 else ""
 
 
 deal_date = div.find("div", {"class": "dealDate"}).get_text()
 
 deal_price = (None if "暂无价格" in div.text
 else float(div.find("div", {"class": "totalPrice"}).find("span", {"class": "number"}).get_text()))
 
 deal_firm = "链家" if "链家成交" in div.text else "其它"
 
 position_info_strs = div.find("div", {"class": "positionInfo"}).get_text().split(" ")
 
 floor = position_info_strs[0].split("(共")[0]
 
 total_floors = int(position_info_strs[0][position_info_strs[0].find("共")+1:position_info_strs[0].rfind("层")])
 
 build_year = int(position_info_strs[1].split("年建")[0]) if "年建" in position_info_strs[1] else ""
 
 build_type = position_info_strs[1].split("年建")[1] if "年建" in position_info_strs[1] else position_info_strs[1]
 
 unit_price = (None if "暂无单价" in div.text
 else int(div.find("div", {"class": "unitPrice"}).find("span", {"class": "number"}).get_text()))
 
 
 cert_term_type = ""
 if "房屋满" in div.text:
 cert_term_type = div.text.split("房屋满")[1][:1]
 
 
 list_price = None
 if "挂牌" in div.text:
 list_price = float(div.text.split("挂牌")[1].split("万")[0])
 deal_cycle = None
 if "成交周期" in div.text:
 deal_cycle = int(div.text.split("成交周期")[1].split("天")[0])
 
 temp_df = pd.Series(data=[xiaoqu_id, xiaoqu_name, district, region, house_type,
 built_area, deal_price, list_price, unit_price,
 deal_cycle, deal_date, deal_firm, direction, decoration,
 elevator, floor, total_floors, build_year, build_type,
 cert_term_type],
 index=["小区ID", "小区名称", "行政区域", "片区", "户型",
 "建筑面积", "成交价", "挂牌价", "单价",
 "成交周期", "成交日期", "成交渠道", "朝向", "装修",
 "电梯", "楼层", "总楼层", "建筑年份", "建筑类型",
 "是否满二满五"],
 name=trans_id)
 df = df.append(temp_df)
 done = True
 except Exception as e:
 try_time += 1
 if try_time == 5:
 print("[E]: get_xiaoqu_transactions_in_page ", xiaoqu_id, page_no, e)
 break
 return df
 
 
 """ 获取小区所有的成交记录 """
 def get_xiaoqu_transactions(city, xiaoqu_id):
 df_xiaoqu_transctions = pd.DataFrame()
 
 for i in range(5):
 try:
 http_url = "http://{}.lianjia.com/chengjiao/c{}/".format(city, xiaoqu_id)
 bs_obj = get_bs_obj_from_url(http_url)
 if not bs_obj.find("a", {"href": "/chengjiao/c{}/".format(xiaoqu_id)}):
 print("[W]: xiaoqu_id = {}, 没有这个小区的成交记录".format(xiaoqu_id))
 return
 total_transaction_num = int(bs_obj.find("div", {"class": "total fl"}).find("span").get_text())
 if total_transaction_num == 0:
 return df_xiaoqu_transctions
 total_pages = int(json.loads(bs_obj.find("div", {"class": "page-box house-lst-page-box"}).attrs["page-data"])["totalPage"])
 
 break
 except Exception as e:
 if i == 4:
 print("[E]: get_xiaoqu_transactions ", xiaoqu_id, e)
 return df_xiaoqu_transctions
 
 fail_list = []
 for page_no in range(1, total_pages+1):
 xiaoqu_transactions_partial = get_xiaoqu_transactions_in_page(city, xiaoqu_id, page_no)
 if xiaoqu_transactions_partial is None or len(xiaoqu_transactions_partial) == 0:
 fail_list.append(page_no)
 else:
 df_xiaoqu_transctions = df_xiaoqu_transctions.append(xiaoqu_transactions_partial)
 for page_no in fail_list:
 xiaoqu_transactions_partial = get_xiaoqu_transactions_in_page(city, xiaoqu_id, page_no)
 if xiaoqu_transactions_partial is not None and len(xiaoqu_transactions_partial) > 0:
 df_xiaoqu_transctions = df_xiaoqu_transctions.append(xiaoqu_transactions_partial)
 return df_xiaoqu_transctions
 
 
 """ 根据小区ID列表,获取所有小区的所有成交记录 """
 def get_transactions_from_xiaoqu_list(city, xiaoqu_list):
 df = pd.DataFrame()
 print(" ")
 
 with futures.ThreadPoolExecutor(max_workers=NUM_THREADS) as executor:
 future_list = []
 for xiaoqu in xiaoqu_list:
 future_list.append(executor.submit(get_xiaoqu_transactions, city, xiaoqu))
 fail_list = []
 count = 0
 for future in futures.as_completed(future_list):
 if future.exception() is not None:
 print(future.exception())
 else:
 xiaoqu_transactions_partial = future.result()
 df = df.append(xiaoqu_transactions_partial)
 count += 1
 sys.stdout.write("\rProgress: {}/{}".format(count, len(xiaoqu_list)))
 return df
 
 
 def get_transactions_detail_from_id(city, trans_id):
 district = df_transactions.loc[trans_id, "行政区域"]
 district = district.values[0] if type(district) == pd.core.series.Series else district
 region = df_transactions.loc[trans_id, "片区"]
 region = region.values[0] if type(region) == pd.core.series.Series else region
 xiaoqu_id = df_transactions.loc[trans_id, "小区ID"]
 xiaoqu_name = df_transactions.loc[trans_id, "小区名称"]
 
 trans_id = str(trans_id)
 http_url = "http://{}.lianjia.com/chengjiao/{}.html".format(city, trans_id)
 done = False
 try_times = 0
 
 while not done:
 try:
 ss = pd.Series(name=trans_id)
 bs_obj = get_bs_obj_from_url(http_url)
 
 ss.set_value("行政区域", district)
 ss.set_value("片区", region)
 ss.set_value("小区ID", xiaoqu_id)
 ss.set_value("小区名称", xiaoqu_name)
 
 
 div_price = bs_obj.find("div", {"class": "price"})
 
 deal_price = float(div_price.find("i").text) if div_price.find("i") else None
 ss.set_value("总价", deal_price)
 
 unit_price = float(div_price.find("b").text) if div_price.find("b") else None
 ss.set_value("单价", unit_price)
 
 
 deal_firm = "链家" if "链家成交" in str(bs_obj.find("div", {"class": "house-title"})) else "其他"
 ss.set_value("成交渠道", deal_firm)
 
 
 house_picture_url = bs_obj.find("div", {"class": "bigImg"}).find("li", {"data-desc": "户型图"}).attrs['data-src'] \
 if "户型图" in str(bs_obj) else None
 ss.set_value("户型图URL", house_picture_url)
 
 
 if bs_obj.find("div", {"class": "msg"}):
 msg_spans = bs_obj.find("div", {"class": "msg"}).find_all("span")
 for span in msg_spans:
 key = str(span).split("</label>")[1].split("</span")[0].strip()
 value = span.find("label").text
 value = float(value) if is_number(value) else value
 value = None if value == "暂无数据" else value
 ss.set_value(key, value)
 
 
 li_list = list()
 
 if bs_obj.find("div", {"class": "base"}):
 li_list += bs_obj.find("div", {"class": "base"}).find_all("li")
 
 if bs_obj.find("div", {"class": "transaction"}):
 li_list += bs_obj.find("div", {"class": "transaction"}).find_all("li")
 for li in li_list:
 key = li.find("span").text
 value = str(li).split("span>")[1].split("</li")[0].strip()
 if "面积" in key:
 value = float(value[:-1]) if is_number(value[:-1]) else value
 elif "年限" in key:
 value = int(value[:-1]) if is_number(value[:-1]) else value
 elif key == "所在楼层" and " (" in value:
 floor, total_floors = value.strip().split(" ")
 ss.set_value("楼层", floor)
 if "共" in total_floors:
 total_floors = int(total_floors.split("共")[1].split("层")[0])
 ss.set_value("总楼层", total_floors)
 continue
 elif key == "建成年代":
 value = int(value) if is_number(value) else value
 value = None if value == "暂无数据" else value
 ss.set_value(key, value)
 done = True
 except Exception as e:
 try_times += 1
 if try_times == 5:
 print("[E]: get_transactions_from_xiaoqu_id, xiaoqu_id = ", trans_id, e)
 break
 return ss
 
 
 def get_transaction_detail_all(city, start=0, end=None):
 df_trans_detail = pd.DataFrame()
 with futures.ThreadPoolExecutor(max_workers=NUM_THREADS) as executor:
 future_list = list()
 trans_id_list = df_transactions.index.values[start:end]
 count = 0
 for trans_id in trans_id_list:
 future_list.append(executor.submit(get_transactions_detail_from_id, city, trans_id))
 for future in futures.as_completed(future_list):
 if future.exception() is not None:
 print(future.exception())
 else:
 ss_id = future.result()
 df_trans_detail = df_trans_detail.append(ss_id)
 count += 1
 sys.stdout.write("\r获取成交记录详情网页: {}/{}".format(count, len(trans_id_list)))
 
 return df_trans_detail
 
 
 
 
 
 
 
 
 CITY = city_dict["成都"]
 
 
 
 xiaoqu_list = get_xiaoqu_of_city(CITY)
 with open("{}_list.txt".format(CITY), mode="w") as f:
 for xiaoqu in xiaoqu_list:
 f.write(xiaoqu + "\n")
 print("list write finished.")
 
 
 
 
 with open("{}_list.txt".format(CITY), mode="r") as f:
 xiaoqu_list = [int(line[:-1]) for line in f.readlines()]
 print("获取小区信息 ...")
 df_xiaoqu_info = get_xiaoqu_info_from_xiaoqu_list(CITY, xiaoqu_list)
 df_xiaoqu_info.to_csv("{}_info.csv".format(CITY), sep=",", encoding="utf-8")
 writer = pd.ExcelWriter("{}_info.xlsx".format(CITY))
 df_xiaoqu_info.to_excel(writer, "小区信息")
 writer.save()
 print("小区信息保存成功.")
 
 
 
 
 
 print("加载小区信息 ...")
 with open("{}_list.txt".format(CITY), mode="r") as f:
 xiaoqu_list = [int(line[:-1]) for line in f.readlines()]
 df_xiaoqu_info = pd.read_csv("./{}_info.csv".format(CITY), index_col=1)
 
 
 PART = 10
 START = 0
 df_transactions = pd.DataFrame()
 print("爬取成交记录 ...")
 for i in range(START, PART):
 start = int(i * len(xiaoqu_list) / PART)
 end = int((i + 1) * len(xiaoqu_list) / PART)
 df_transactions = df_transactions.append(get_transactions_from_xiaoqu_list(CITY, xiaoqu_list[start:end]))
 writer = pd.ExcelWriter("{}_成交记录_{}.xlsx".format(CITY, i+1))
 df_transactions.to_excel(writer, "Data")
 writer.save()
 df_transactions.to_csv("{}_成交记录_{}.csv".format(CITY, i+1), sep=",", encoding="utf-8")
 print("\nfile {} written.".format(i+1))
 try:
 os.remove("{}_成交记录_{}.csv".format(CITY, i))
 os.remove("{}_成交记录_{}.xlsx".format(CITY, i))
 except Exception as e:
 pass
 shutil.copy("{}_成交记录_{}.xlsx".format(CITY, PART),
 "{}_成交记录.xlsx".format(CITY))
 shutil.copy("{}_成交记录_{}.csv".format(CITY, PART),
 "{}_成交记录.csv".format(CITY))
 
 
 
 print("加载成交记录 ...")
 df_transactions = pd.read_excel("{}_成交记录.xlsx".format(CITY), index_col=0)
 PART = 10
 START = 0
 df_trans_detail_all = pd.DataFrame()
 print("获取成交记录详情 ...")
 for i in range(START, PART):
 start = int(i * len(df_transactions) / PART)
 end = int((i + 1) * len(df_transactions) / PART)
 df_trans_detail_part = get_transaction_detail_all(CITY, start, end)
 df_trans_detail_all = df_trans_detail_all.append(df_trans_detail_part)
 
 writer = pd.ExcelWriter("{}_成交记录_all_{}.xlsx".format(CITY, i+1))
 df_temp = df_trans_detail_all.drop("户型图URL", inplace=False, axis=1)
 df_temp.to_excel(writer, "Data")
 writer.save()
 df_trans_detail_all.to_csv("{}_成交记录_all_{}.csv".format(CITY, i+1), sep=",", encoding="utf-8")
 try:
 os.remove("{}_成交记录_all_{}.csv".format(CITY, i))
 os.remove("{}_成交记录_all_{}.xlsx".format(CITY, i))
 except Exception as e:
 pass
 print("\nfile {} written.".format(i+1))
 
 
 
 |