SPSS+AMOS数据分析案例教程-关于中介模
SPSS视频教程内容目录和跳转链接
Meta分析辅导+代找数据
SPSS+AMOS数据分析案例教程-关于中介模
SPSS视频教程内容目录和跳转链接
R语言快速入门视频教程
Python智联招聘数据分析
LCA潜在类别分析和Mplus应用
Amos结构方程模型数据分析入门教程
倒U关系回归分析中介效应和调节效应分析SPSS视频教程
统计咨询(图文问答)

stata教程09-项目反应理论IRT的Rash模型

在B站@mlln-cn, 我就能回答你的问题奥!

文章目录
  1. 1. 背景知识
  2. 2. 使用$\eta$
  3. 3. 案例

本篇文章主要演示了一下如何使用固定效应的条件逻辑回归模型来估计题目难度。

本篇文章部分来自于stata的官方文档, 英文好的建议读原文: https://www.stata.com/support/faqs/statistics/rasch-model/

背景知识

Rasch模型是心理测量学中二分类题目(例如,选择题只有正确和错误之分)的主要模型之一。设$y_{ij}$取值只有(0或者1),其中$i=1,...,n$,n是被试人数,$j = 1,...,m$,m是题目的数量。 Rasch模型可以写为logit-linear模型:

$$ logit P(y_{ij}=1 | \eta_i) = \eta_i − \theta_j $$

当将$\eta$$\theta$作为参数(固定效应)处理时,人们早就知道最大似然估计在标准的逼近过程中是不一致的(n→无穷大,m是固定的)。我们每多测试一个被试,我们就会多了m个观测数据, 就会有一个额外的$\eta$

在20世纪80年代,Andersen展示了$\theta_j$的条件极大似然(CML)估计(条件就是每个被试在所有题目上的得分$y_{i+}$

心理测量学家也研究了高斯随机效应估计器,这可能只是一个小小的惊喜。从Stata 14开始,使用irt 1pl可以拟合数学上等效的模型。从Stata 13开始,Rasch模型可以使用gsem;见[SEM]例子28g。在Stata 13之前,Rasch模型可以通过随机效果面板估算器拟合,由xtlogit,re命令计算。

使用$\eta$

考虑最可能的情况;有一个数据集,每一行代表一个被试在所有题上的得分, 每一列代表同一个题目下所有被试的得分。你可以使用clogit中的条件logit固定效应估计器获得Rasch模型的θ参数的CLM估计值(xtlogit,fe相当于键入clogit)。该命令要求所有得分保存为一个变量,而“组”变量用于识别属于同一被试的分数。这可以使用reshape命令完成。最后,可以将Rasch模型描述为具有m个协变量$x_{ijk}$$k = 1,...,m$的“clogit模型”,因此对于所有i,如果j = k,则$x_{ijk}= -1$(这是因为$\theta$的系数为负数), 否则为0。$x_{ijk}$的回归系数为$\theta_k$

案例

想象一下有10题目, 120个学生作答,编码为1(正确)和0(不正确)。我们想知道10个数学问题是否涉及一维尺度,以便无论受试者的能力如何,都可以根据难度对项目进行排序。

加载数据:

1
use http://www.stata.com/support/faqs/dta/raschfaq, clear
1
describe
输出(stream):
Contains data from http://www.stata.com/support/faqs/dta/raschfaq.dta obs: 120 vars: 11 19 May 2005 07:47 size: 1,440 --------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- storage display value variable name type format label variable label --------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- math1 byte %9.0g Correct math item 1 math2 byte %9.0g Correct math item 2 math3 byte %9.0g Correct math item 3 math4 byte %9.0g Correct math item 4 math5 byte %9.0g Correct math item 5 math6 byte %9.0g Correct math item 6 math7 byte %9.0g Correct math item 7 math8 byte %9.0g Correct math item 8 math9 byte %9.0g Correct math item 9 math10 byte %9.0g Correct math item 10 subj_id int %9.0g --------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- Sorted by:

为了对数据有一个大概的了解, 我们描述一下数据:

1
summarize math*
输出(stream):
Variable | Obs Mean Std. Dev. Min Max -------------+--------------------------------------------------------- math1 | 120 .8083333 .3952626 0 1 math2 | 120 .775 .4193332 0 1 math3 | 120 .6833333 .4671266 0 1 math4 | 120 .55 .4995797 0 1 math5 | 120 .5333333 .5009794 0 1 -------------+--------------------------------------------------------- math6 | 120 .45 .4995797 0 1 math7 | 120 .425 .4964157 0 1 math8 | 120 .3 .460179 0 1 math9 | 120 .2583333 .4395535 0 1 math10 | 120 .1666667 .3742406 0 1

为了能够拟合我们的模型, 首先需要reshape我们的数据, 将宽数据转换为长数据, 我们先看下现在的格式(宽格式):

1
list in 1/6
输出(stream):
+-----------------------------------------------------------------------------------------------------------------------------+ | math1 math2 math3 math4 math5 math6 math7 math8 math9 math10 subj_id | |-----------------------------------------------------------------------------------------------------------------------------| 1. | correct correct correct incorrect incorrect incorrect incorrect incorrect incorrect incorrect 1 | 2. | correct correct incorrect incorrect correct correct correct incorrect incorrect incorrect 2 | 3. | correct correct incorrect incorrect correct incorrect incorrect incorrect incorrect incorrect 3 | 4. | correct correct correct incorrect correct incorrect correct incorrect incorrect incorrect 4 | 5. | correct correct correct incorrect incorrect correct correct correct incorrect incorrect 5 | |-----------------------------------------------------------------------------------------------------------------------------| 6. | correct correct correct incorrect correct incorrect incorrect correct correct incorrect 6 | +-----------------------------------------------------------------------------------------------------------------------------+

转换成长格式:

1
reshape long math, i(subj_id) j(item)
输出(stream):
(note: j = 1 2 3 4 5 6 7 8 9 10) Data wide -> long ----------------------------------------------------------------------------- Number of obs. 120 -> 1200 Number of variables 11 -> 3 j variable (10 values) -> item xij variables: math1 math2 ... math10 -> math -----------------------------------------------------------------------------
1
list in 1/30
输出(stream):
+----------------------------+ | subj_id item math | |----------------------------| 1. | 1 1 correct | 2. | 1 2 correct | 3. | 1 3 correct | 4. | 1 4 incorrect | 5. | 1 5 incorrect | |----------------------------| 6. | 1 6 incorrect | 7. | 1 7 incorrect | 8. | 1 8 incorrect | 9. | 1 9 incorrect | 10. | 1 10 incorrect | |----------------------------| 11. | 2 1 correct | 12. | 2 2 correct | 13. | 2 3 incorrect | 14. | 2 4 incorrect | 15. | 2 5 correct | |----------------------------| 16. | 2 6 correct | 17. | 2 7 correct | 18. | 2 8 incorrect | 19. | 2 9 incorrect | 20. | 2 10 incorrect | |----------------------------| 21. | 3 1 correct | 22. | 3 2 correct | 23. | 3 3 incorrect | 24. | 3 4 incorrect | 25. | 3 5 correct | |----------------------------| 26. | 3 6 incorrect | 27. | 3 7 incorrect | 28. | 3 8 incorrect | 29. | 3 9 incorrect | 30. | 3 10 incorrect | +----------------------------+

按照上面的假设, 我们生成自变量$x_{ijk}$, 这k个变量的系数就是($\theta_j$

1
2
3
forvalues num =1/10{
gen Th`num' = -(item==`num')
}

看一下现在的数据, 我们得到了Th1-Th10这10个变量, 他们都是自变量, 用于预测math得分。

1
list in 1/30
输出(stream):
+-----------------------------------------------------------------------------------------+ | subj_id item math Th1 Th2 Th3 Th4 Th5 Th6 Th7 Th8 Th9 Th10 | |-----------------------------------------------------------------------------------------| 1. | 1 1 correct -1 0 0 0 0 0 0 0 0 0 | 2. | 1 2 correct 0 -1 0 0 0 0 0 0 0 0 | 3. | 1 3 correct 0 0 -1 0 0 0 0 0 0 0 | 4. | 1 4 incorrect 0 0 0 -1 0 0 0 0 0 0 | 5. | 1 5 incorrect 0 0 0 0 -1 0 0 0 0 0 | |-----------------------------------------------------------------------------------------| 6. | 1 6 incorrect 0 0 0 0 0 -1 0 0 0 0 | 7. | 1 7 incorrect 0 0 0 0 0 0 -1 0 0 0 | 8. | 1 8 incorrect 0 0 0 0 0 0 0 -1 0 0 | 9. | 1 9 incorrect 0 0 0 0 0 0 0 0 -1 0 | 10. | 1 10 incorrect 0 0 0 0 0 0 0 0 0 -1 | |-----------------------------------------------------------------------------------------| 11. | 2 1 correct -1 0 0 0 0 0 0 0 0 0 | 12. | 2 2 correct 0 -1 0 0 0 0 0 0 0 0 | 13. | 2 3 incorrect 0 0 -1 0 0 0 0 0 0 0 | 14. | 2 4 incorrect 0 0 0 -1 0 0 0 0 0 0 | 15. | 2 5 correct 0 0 0 0 -1 0 0 0 0 0 | |-----------------------------------------------------------------------------------------| 16. | 2 6 correct 0 0 0 0 0 -1 0 0 0 0 | 17. | 2 7 correct 0 0 0 0 0 0 -1 0 0 0 | 18. | 2 8 incorrect 0 0 0 0 0 0 0 -1 0 0 | 19. | 2 9 incorrect 0 0 0 0 0 0 0 0 -1 0 | 20. | 2 10 incorrect 0 0 0 0 0 0 0 0 0 -1 | |-----------------------------------------------------------------------------------------| 21. | 3 1 correct -1 0 0 0 0 0 0 0 0 0 | 22. | 3 2 correct 0 -1 0 0 0 0 0 0 0 0 | 23. | 3 3 incorrect 0 0 -1 0 0 0 0 0 0 0 | 24. | 3 4 incorrect 0 0 0 -1 0 0 0 0 0 0 | 25. | 3 5 correct 0 0 0 0 -1 0 0 0 0 0 | |-----------------------------------------------------------------------------------------| 26. | 3 6 incorrect 0 0 0 0 0 -1 0 0 0 0 | 27. | 3 7 incorrect 0 0 0 0 0 0 -1 0 0 0 | 28. | 3 8 incorrect 0 0 0 0 0 0 0 -1 0 0 | 29. | 3 9 incorrect 0 0 0 0 0 0 0 0 -1 0 | 30. | 3 10 incorrect 0 0 0 0 0 0 0 0 0 -1 | +-----------------------------------------------------------------------------------------+
1
summarize math
输出(stream):
Variable | Obs Mean Std. Dev. Min Max -------------+--------------------------------------------------------- math | 1,200 .495 .5001835 0 1

下面就可以进行固定效应条件逻辑回归, group(subj_id)用于表示相同的subj_id的数据来自于同一个个体。

1
clogit math Th2-Th10, group(subj_id)
输出(stream):
note: multiple positive outcomes within groups encountered. note: 5 groups (50 obs) dropped because of all positive or all negative outcomes. Iteration 0: log likelihood = -436.11778 Iteration 1: log likelihood = -435.352 Iteration 2: log likelihood = -435.35069 Iteration 3: log likelihood = -435.35069 Conditional (fixed-effects) logistic regression Number of obs = 1,150 LR chi2(9) = 243.80 Prob > chi2 = 0.0000 Log likelihood = -435.35069 Pseudo R2 = 0.2188 ------------------------------------------------------------------------------ math | Coef. Std. Err. z P>|z| [95% Conf. Interval] -------------+---------------------------------------------------------------- Th2 | .241266 .3481052 0.69 0.488 -.4410077 .9235397 Th3 | .7921615 .3318989 2.39 0.017 .1416515 1.442672 Th4 | 1.450772 .3241392 4.48 0.000 .8154703 2.086073 Th5 | 1.528206 .3239802 4.72 0.000 .8932166 2.163195 Th6 | 1.913438 .3253857 5.88 0.000 1.275694 2.551183 Th7 | 2.030632 .3265377 6.22 0.000 1.390629 2.670634 Th8 | 2.662249 .3389274 7.85 0.000 1.997964 3.326535 Th9 | 2.904665 .3467128 8.38 0.000 2.225121 3.58421 Th10 | 3.55384 .3771324 9.42 0.000 2.814674 4.293006 ------------------------------------------------------------------------------

上面的结果中, 估计得到的系数就是我们需要的$\theta_j$

注意
本文由jupyter notebook转换而来, 您可以在这里下载notebook
统计咨询请加QQ 2726725926, 微信 mllncn, SPSS统计咨询是收费的
微博上@mlln-cn可以向我免费题问
请记住我的网址: mlln.cn 或者 jupyter.cn

统计咨询

统计咨询请加入我的星球,有问必回

加入星球向我提问(必回),下载资料,数据,软件等

赞助

持续创造有价值的内容, 我需要你的帮助