Mplus model8latent 模型讲解

来自图书《MPlus中介调节模型》

使用Mplus分析调节中介模型

  • 理论模型
  • 数学模型
  • 数学推导
  • 代码解读

理论模型

数学模型

数学公式1

Y = b0 + b1M + c1'X + c2'W + c3'XW

数学公式2

Y = b0 + b1M + c1'X + c2'W + c3'XW
M = a0 + a1X + a2W + a3XW

数学公式3

Y = b0 + b1M + c1'X + c2'W + c3'XW
M = a0 + a1X + a2W + a3XW
Y = b0 + b1(a0 + a1X + a2W + a3XW) + c1'X + c2'W + c3'XW

数学公式4

Y = b0 + b1M + c1'X + c2'W + c3'XW
M = a0 + a1X + a2W + a3XW
Y = b0 + b1(a0 + a1X + a2W + a3XW) + c1'X + c2'W + c3'XW
Y = b0 + a0b1 + a1b1X + a2b1W + a3b1XW + c1'X + c2'W + c3'XW

数学公式5

Y = b0 + b1M + c1'X + c2'W + c3'XW
M = a0 + a1X + a2W + a3XW
Y = b0 + b1(a0 + a1X + a2W + a3XW) + c1'X + c2'W + c3'XW
Y = b0 + a0b1 + a1b1X + a2b1W + a3b1XW + c1'X + c2'W + c3'XW
Y = (b0 + a0b1 + a2b1W + c2'W) + (a1b1 + a3b1W + c1' + c3'W)X

数学公式6

Y = b0 + b1M + c1'X + c2'W + c3'XW
M = a0 + a1X + a2W + a3XW
Y = b0 + b1(a0 + a1X + a2W + a3XW) + c1'X + c2'W + c3'XW
Y = b0 + a0b1 + a1b1X + a2b1W + a3b1XW + c1'X + c2'W + c3'XW
Y = (b0 + a0b1 + a2b1W + c2'W) + (a1b1 + a3b1W + c1' + c3'W)X
X对Y的间接效应(条件于W): a1b1 + a3b1W = (a1 + a3W)b1

数学公式7

Y = b0 + b1M + c1'X + c2'W + c3'XW
M = a0 + a1X + a2W + a3XW
Y = b0 + b1(a0 + a1X + a2W + a3XW) + c1'X + c2'W + c3'XW
Y = b0 + a0b1 + a1b1X + a2b1W + a3b1XW + c1'X + c2'W + c3'XW
Y = (b0 + a0b1 + a2b1W + c2'W) + (a1b1 + a3b1W + c1' + c3'W)X
X对Y的间接效应(条件于W): a1b1 + a3b1W = (a1 + a3W)b1
X对Y的直接效应(条件于W): c1' + c3'W

代码解读1

USEVARIABLES = X1 X2 X3 X4 M1 M2 M3 M4 W1 W2 W3 W4 Y1 Y2 Y3 Y4;

代码解读2

USEVARIABLES = X1 X2 X3 X4 M1 M2 M3 M4 W1 W2 W3 W4 Y1 Y2 Y3 Y4;
ANALYSIS: 
TYPE = GENERAL RANDOM; 
ESTIMATOR = ML; 
ALGORITHM = INTEGRATION;

代码解读3

USEVARIABLES = X1 X2 X3 X4 M1 M2 M3 M4 W1 W2 W3 W4 Y1 Y2 Y3 Y4;
ANALYSIS: 
TYPE = GENERAL RANDOM; 
ESTIMATOR = ML; 
ALGORITHM = INTEGRATION;
MODEL: 
X BY X1 X2 X3 X4; 
M BY M1 M2 M3 M4; 
W BY W1* W2 W3 W4; 
Y BY Y1 Y2 Y3 Y4;

代码解读4

USEVARIABLES = X1 X2 X3 X4 M1 M2 M3 M4 W1 W2 W3 W4 Y1 Y2 Y3 Y4;
ANALYSIS: 
TYPE = GENERAL RANDOM; 
ESTIMATOR = ML; 
ALGORITHM = INTEGRATION;
MODEL: 
X BY X1 X2 X3 X4; 
M BY M1 M2 M3 M4; 
W BY W1* W2 W3 W4; 
Y BY Y1 Y2 Y3 Y4;
W@1;

代码解读5

USEVARIABLES = X1 X2 X3 X4 M1 M2 M3 M4 W1 W2 W3 W4 Y1 Y2 Y3 Y4;
ANALYSIS: 
TYPE = GENERAL RANDOM; 
ESTIMATOR = ML; 
ALGORITHM = INTEGRATION;
MODEL: 
X BY X1 X2 X3 X4; 
M BY M1 M2 M3 M4; 
W BY W1* W2 W3 W4; 
Y BY Y1 Y2 Y3 Y4;
W@1;
XW | X XWITH W;

代码解读6

USEVARIABLES = X1 X2 X3 X4 M1 M2 M3 M4 W1 W2 W3 W4 Y1 Y2 Y3 Y4;
ANALYSIS: 
TYPE = GENERAL RANDOM; 
ESTIMATOR = ML; 
ALGORITHM = INTEGRATION;
MODEL: 
X BY X1 X2 X3 X4; 
M BY M1 M2 M3 M4; 
W BY W1* W2 W3 W4; 
Y BY Y1 Y2 Y3 Y4;
W@1;
XW | X XWITH W;
Y ON M (b1); Y ON X (cdash1); Y ON W (cdash2); Y ON XW (cdash3);

代码解读7

USEVARIABLES = X1 X2 X3 X4 M1 M2 M3 M4 W1 W2 W3 W4 Y1 Y2 Y3 Y4;
ANALYSIS: 
TYPE = GENERAL RANDOM; 
ESTIMATOR = ML; 
ALGORITHM = INTEGRATION;
MODEL: 
X BY X1 X2 X3 X4; 
M BY M1 M2 M3 M4; 
W BY W1* W2 W3 W4; 
Y BY Y1 Y2 Y3 Y4;
W@1;
XW | X XWITH W;
Y ON M (b1); Y ON X (cdash1); Y ON W (cdash2); Y ON XW (cdash3);
M ON X (a1); M ON W (a2); M ON XW (a3);

代码解读8

USEVARIABLES = X1 X2 X3 X4 M1 M2 M3 M4 W1 W2 W3 W4 Y1 Y2 Y3 Y4;
ANALYSIS: 
TYPE = GENERAL RANDOM; 
ESTIMATOR = ML; 
ALGORITHM = INTEGRATION;
MODEL: 
X BY X1 X2 X3 X4; 
M BY M1 M2 M3 M4; 
W BY W1* W2 W3 W4; 
Y BY Y1 Y2 Y3 Y4;
W@1;
XW | X XWITH W;
Y ON M (b1); Y ON X (cdash1); Y ON W (cdash2); Y ON XW (cdash3);
M ON X (a1); M ON W (a2); M ON XW (a3);
MODEL CONSTRAINT: 
NEW(LOW_W MED_W HIGH_W ...); 
LOW_W = -1; MED_W = 0; HIGH_W = 1; ...

代码解读9

USEVARIABLES = X1 X2 X3 X4 M1 M2 M3 M4 W1 W2 W3 W4 Y1 Y2 Y3 Y4;
ANALYSIS: 
TYPE = GENERAL RANDOM; 
ESTIMATOR = ML; 
ALGORITHM = INTEGRATION;
MODEL: 
X BY X1 X2 X3 X4; 
M BY M1 M2 M3 M4; 
W BY W1* W2 W3 W4; 
Y BY Y1 Y2 Y3 Y4;
W@1;
XW | X XWITH W;
Y ON M (b1); Y ON X (cdash1); Y ON W (cdash2); Y ON XW (cdash3);
M ON X (a1); M ON W (a2); M ON XW (a3);
MODEL CONSTRAINT: 
NEW(LOW_W MED_W HIGH_W ...); 
LOW_W = -1; MED_W = 0; HIGH_W = 1; ...
IND_LOWW = a1*b1 + a3*b1*LOW_W; ...  DIR_LOWW = cdash1 + cdash3*LOW_W; ... TOT_LOWW = IND_LOWW + DIR_LOWW; ...

代码解读10

USEVARIABLES = X1 X2 X3 X4 M1 M2 M3 M4 W1 W2 W3 W4 Y1 Y2 Y3 Y4;
ANALYSIS: 
TYPE = GENERAL RANDOM; 
ESTIMATOR = ML; 
ALGORITHM = INTEGRATION;
MODEL: 
X BY X1 X2 X3 X4; 
M BY M1 M2 M3 M4; 
W BY W1* W2 W3 W4; 
Y BY Y1 Y2 Y3 Y4;
W@1;
XW | X XWITH W;
Y ON M (b1); Y ON X (cdash1); Y ON W (cdash2); Y ON XW (cdash3);
M ON X (a1); M ON W (a2); M ON XW (a3);
MODEL CONSTRAINT: 
NEW(LOW_W MED_W HIGH_W ...); 
LOW_W = -1; MED_W = 0; HIGH_W = 1; ...
IND_LOWW = a1*b1 + a3*b1*LOW_W; ...  DIR_LOWW = cdash1 + cdash3*LOW_W; ... TOT_LOWW = IND_LOWW + DIR_LOWW; ...
PLOT(LOMOD MEDMOD HIMOD); LOOP(XVAL,-3,3,0.1); LOMOD = IND_LOWW*XVAL; ...

代码解读11

USEVARIABLES = X1 X2 X3 X4 M1 M2 M3 M4 W1 W2 W3 W4 Y1 Y2 Y3 Y4;
ANALYSIS: 
TYPE = GENERAL RANDOM; 
ESTIMATOR = ML; 
ALGORITHM = INTEGRATION;
MODEL: 
X BY X1 X2 X3 X4; 
M BY M1 M2 M3 M4; 
W BY W1* W2 W3 W4; 
Y BY Y1 Y2 Y3 Y4;
W@1;
XW | X XWITH W;
Y ON M (b1); Y ON X (cdash1); Y ON W (cdash2); Y ON XW (cdash3);
M ON X (a1); M ON W (a2); M ON XW (a3);
MODEL CONSTRAINT: 
NEW(LOW_W MED_W HIGH_W ...); 
LOW_W = -1; MED_W = 0; HIGH_W = 1; ...
IND_LOWW = a1*b1 + a3*b1*LOW_W; ...  DIR_LOWW = cdash1 + cdash3*LOW_W; ... TOT_LOWW = IND_LOWW + DIR_LOWW; ...
PLOT(LOMOD MEDMOD HIMOD); LOOP(XVAL,-3,3,0.1); LOMOD = IND_LOWW*XVAL; ...
PLOT: TYPE = plot2; OUTPUT: CINT;

资源汇总

  • 本视频讲义地址: https://mlln.cn/mplus-model-templates/model8latent.html
  • 图书《MPlus中介调节模型》打包下载: 点击下载
  • 图书《MPlus中介调节模型》在线看: 点击查看
  • 视频教程: 点击这里打开视频
  • Mplus 模型模板教程列表: https://mlln.cn/mplus-model-templates
  • 统计咨询: https://wx.zsxq.com/group/88888188828842