来自图书《MPlus中介调节模型》
模型方程:
Y = b0 + b1M1 + b2M2 + b3W + b4M1W + b5M2W + c1'X + c2'W + c3'XW
M1 = a01 + a1X
M2 = a02 + a2X + d1M1
替换 M1 和 M2:
Y = b0 + b1(a01 + a1X) + b2(a02 + a2X + d1(a01 + a1X)) + b3(a01 + a1X)W + b4(a02 + a2X + d1(a01 + a1X))W + c1'X + c2'W + c3'XW
展开括号:
Y = b0 + a01b1 + a1b1X + a02b2 + a2b2X + a01d1b2 + a1d1b2X + a01b3W + a1b3XW + a02b4W + a2b4XW + a01d1b4W + a1d1b4XW + c1'X + c2'W + c3'XW
模型方程:
Y = b0 + b1M1 + b2M2 + b3W + b4M1W + b5M2W + c1'X + c2'W + c3'XW
M1 = a01 + a1X
M2 = a02 + a2X + d1M1
替换 M1 和 M2:
Y = b0 + b1(a01 + a1X) + b2(a02 + a2X + d1(a01 + a1X)) + b3(a01 + a1X)W + b4(a02 + a2X + d1(a01 + a1X))W + c1'X + c2'W + c3'XW
展开括号:
Y = b0 + a01b1 + a1b1X + a02b2 + a2b2X + a01d1b2 + a1d1b2X + a01b3W + a1b3XW + a02b4W + a2b4XW + a01d1b4W + a1d1b4XW + c1'X + c2'W + c3'XW
分组整理:
Y = (b0 + a01b1 + a02b2 + a01d1b2 + a01b3W + a02b4W + a01d1b4W + c2'W) + (a1b1 + a2b2 + a1d1b2 + a1b3W + a2b4W + a1d1b4W + c1' + c3'W)X
模型方程:
Y = b0 + b1M1 + b2M2 + b3W + b4M1W + b5M2W + c1'X + c2'W + c3'XW
M1 = a01 + a1X
M2 = a02 + a2X + d1M1
替换 M1 和 M2:
Y = b0 + b1(a01 + a1X) + b2(a02 + a2X + d1(a01 + a1X)) + b3(a01 + a1X)W + b4(a02 + a2X + d1(a01 + a1X))W + c1'X + c2'W + c3'XW
展开括号:
Y = b0 + a01b1 + a1b1X + a02b2 + a2b2X + a01d1b2 + a1d1b2X + a01b3W + a1b3XW + a02b4W + a2b4XW + a01d1b4W + a1d1b4XW + c1'X + c2'W + c3'XW
分组整理:
Y = (b0 + a01b1 + a02b2 + a01d1b2 + a01b3W + a02b4W + a01d1b4W + c2'W) + (a1b1 + a2b2 + a1d1b2 + a1b3W + a2b4W + a1d1b4W + c1' + c3'W)X
Y = a + bX
其中:
a = b0 + a01b1 + a02b2 + a01d1b2 + a01b3W + a02b4W + a01d1b4W + c2'W
b = a1b1 + a2b2 + a1d1b2 + a1b3W + a2b4W + a1d1b4W + c1' + c3'W
模型方程:
Y = b0 + b1M1 + b2M2 + b3W + b4M1W + b5M2W + c1'X + c2'W + c3'XW
M1 = a01 + a1X
M2 = a02 + a2X + d1M1
替换 M1 和 M2:
Y = b0 + b1(a01 + a1X) + b2(a02 + a2X + d1(a01 + a1X)) + b3(a01 + a1X)W + b4(a02 + a2X + d1(a01 + a1X))W + c1'X + c2'W + c3'XW
展开括号:
Y = b0 + a01b1 + a1b1X + a02b2 + a2b2X + a01d1b2 + a1d1b2X + a01b3W + a1b3XW + a02b4W + a2b4XW + a01d1b4W + a1d1b4XW + c1'X + c2'W + c3'XW
分组整理:
Y = (b0 + a01b1 + a02b2 + a01d1b2 + a01b3W + a02b4W + a01d1b4W + c2'W) + (a1b1 + a2b2 + a1d1b2 + a1b3W + a2b4W + a1d1b4W + c1' + c3'W)X
Y = a + bX
其中:
a = b0 + a01b1 + a02b2 + a01d1b2 + a01b3W + a02b4W + a01d1b4W + c2'W
b = a1b1 + a2b2 + a1d1b2 + a1b3W + a2b4W + a1d1b4W + c1' + c3'W
效应分析:
X 对 Y 的间接效应 (Conditional on W):
* 通过 M1 的间接效应: a1(b1 + b3W)
* 通过 M2 的间接效应: a2(b2 + b4W)
* 通过 M1 和 M2 的间接效应: a1d1(b2 + b4W)
X 对 Y 的直接效应 (Conditional on W):
c1' + c3'W
! Predictor variable - X
! Mediator variable(s) – M1, M2
! Moderator variable(s) - W
! Outcome variable - Y
USEVARIABLES = X M1 M2 W Y XW M1W M2W;
DEFINE:
XW = X*W;
M1W = M1*W;
M2W = M2*W;
ANALYSIS:
TYPE = GENERAL;
ESTIMATOR = ML;
BOOTSTRAP = 10000;
MODEL:
Y ON M1 (b1);
Y ON M2 (b2);
Y ON M1W (b3);
Y ON M2W (b4);
Y ON X (cdash1);
Y ON W (cdash2);
Y ON XW (cdash3);
M1 ON X (a1);
M2 ON X (a2);
M2 ON M1 (d1);
! Predictor variable - X
! Mediator variable(s) – M1, M2
! Moderator variable(s) - W
! Outcome variable - Y
USEVARIABLES = X M1 M2 W Y XW M1W M2W;
DEFINE:
XW = X*W;
M1W = M1*W;
M2W = M2*W;
ANALYSIS:
TYPE = GENERAL;
ESTIMATOR = ML;
BOOTSTRAP = 10000;
MODEL:
Y ON M1 (b1);
Y ON M2 (b2);
Y ON M1W (b3);
Y ON M2W (b4);
Y ON X (cdash1);
Y ON W (cdash2);
Y ON XW (cdash3);
M1 ON X (a1);
M2 ON X (a2);
M2 ON M1 (d1);
MODEL CONSTRAINT:
NEW(LOW_W MED_W HIGH_W
LWa1b1 MWa1b1 HWa1b1
LWa2b2 MWa2b2 HWa2b2
LWa1d1b2 MWa1d1b2 HWa1d1b2
IMM_A IMM_B IMM_C
DIR_LW DIR_MW DIR_HW
TOT_LOWW TOT_MEDW TOT_HIW);
LOW_W = #LOWW;
MED_W = #MEDW;
HIGH_W = #HIGHW;
LWa1b1 = a1*b1 + a1*b3*LOW_W;
MWa1b1 = a1*b1 + a1*b3*MED_W;
HWa1b1 = a1*b1 + a1*b3*HIGH_W;
LWa2b2 = a2*b2 + a2*b4*LOW_W;
MWa2b2 = a2*b2 + a2*b4*MED_W;
HWa2b2 = a2*b2 + a2*b4*HIGH_W;
LWa1d1b2 = a1*d1*b2 + a1*d1*b4*LOW_W;
MWa1d1b2 = a1*d1*b2 + a1*d1*b4*MED_W;
HWa1d1b2 = a1*d1*b2 + a1*d1*b4*HIGH_W;
IMM_A = a1*b3;
IMM_B = a1*d1*b4;
IMM_C = a2*b4;
DIR_LW = cdash1 + cdash3*LOW_W;
DIR_MW = cdash1 + cdash3*MED_W;
DIR_HW = cdash1 + cdash3*HIGH_W;
TOT_LOWW = LWa1d1b2 + LWa2b2 + LWa1b1 + DIR_LW;
TOT_MEDW = MWa1d1b2 + MWa2b2 + MWa1b1 + DIR_MW;
TOT_HIW = HWa1d1b2 + HWa2b2 + HWa1b1 + DIR_HW;
! Predictor variable - X
! Mediator variable(s) – M1, M2
! Moderator variable(s) - W
! Outcome variable - Y
USEVARIABLES = X M1 M2 W Y XW M1W M2W;
DEFINE:
XW = X*W;
M1W = M1*W;
M2W = M2*W;
ANALYSIS:
TYPE = GENERAL;
ESTIMATOR = ML;
BOOTSTRAP = 10000;
MODEL:
Y ON M1 (b1);
Y ON M2 (b2);
Y ON M1W (b3);
Y ON M2W (b4);
Y ON X (cdash1);
Y ON W (cdash2);
Y ON XW (cdash3);
M1 ON X (a1);
M2 ON X (a2);
M2 ON M1 (d1);
MODEL CONSTRAINT:
NEW(LOW_W MED_W HIGH_W
LWa1b1 MWa1b1 HWa1b1
LWa2b2 MWa2b2 HWa2b2
LWa1d1b2 MWa1d1b2 HWa1d1b2
IMM_A IMM_B IMM_C
DIR_LW DIR_MW DIR_HW
TOT_LOWW TOT_MEDW TOT_HIW);
LOW_W = #LOWW;
MED_W = #MEDW;
HIGH_W = #HIGHW;
LWa1b1 = a1*b1 + a1*b3*LOW_W;
MWa1b1 = a1*b1 + a1*b3*MED_W;
HWa1b1 = a1*b1 + a1*b3*HIGH_W;
LWa2b2 = a2*b2 + a2*b4*LOW_W;
MWa2b2 = a2*b2 + a2*b4*MED_W;
HWa2b2 = a2*b2 + a2*b4*HIGH_W;
LWa1d1b2 = a1*d1*b2 + a1*d1*b4*LOW_W;
MWa1d1b2 = a1*d1*b2 + a1*d1*b4*MED_W;
HWa1d1b2 = a1*d1*b2 + a1*d1*b4*HIGH_W;
IMM_A = a1*b3;
IMM_B = a1*d1*b4;
IMM_C = a2*b4;
DIR_LW = cdash1 + cdash3*LOW_W;
DIR_MW = cdash1 + cdash3*MED_W;
DIR_HW = cdash1 + cdash3*HIGH_W;
TOT_LOWW = LWa1d1b2 + LWa2b2 + LWa1b1 + DIR_LW;
TOT_MEDW = MWa1d1b2 + MWa2b2 + MWa1b1 + DIR_MW;
TOT_HIW = HWa1d1b2 + HWa2b2 + HWa1b1 + DIR_HW;
! Use loop plot to plot total effect of X on Y for low, med, high values of W
! NOTE - values of 1,5 in LOOP() statement need to be replaced by
! logical min and max limits of predictor X used in analysis
PLOT(LOMOD MEDMOD HIMOD);
LOOP(XVAL,1,5,0.1);
LOMOD = TOT_LOWW*XVAL;
MEDMOD = TOT_MEDW*XVAL;
HIMOD = TOT_HIW*XVAL;
! Predictor variable - X
! Mediator variable(s) – M1, M2
! Moderator variable(s) - W
! Outcome variable - Y
USEVARIABLES = X M1 M2 W Y XW M1W M2W;
DEFINE:
XW = X*W;
M1W = M1*W;
M2W = M2*W;
ANALYSIS:
TYPE = GENERAL;
ESTIMATOR = ML;
BOOTSTRAP = 10000;
MODEL:
Y ON M1 (b1);
Y ON M2 (b2);
Y ON M1W (b3);
Y ON M2W (b4);
Y ON X (cdash1);
Y ON W (cdash2);
Y ON XW (cdash3);
M1 ON X (a1);
M2 ON X (a2);
M2 ON M1 (d1);
MODEL CONSTRAINT:
NEW(LOW_W MED_W HIGH_W
LWa1b1 MWa1b1 HWa1b1
LWa2b2 MWa2b2 HWa2b2
LWa1d1b2 MWa1d1b2 HWa1d1b2
IMM_A IMM_B IMM_C
DIR_LW DIR_MW DIR_HW
TOT_LOWW TOT_MEDW TOT_HIW);
LOW_W = #LOWW;
MED_W = #MEDW;
HIGH_W = #HIGHW;
LWa1b1 = a1*b1 + a1*b3*LOW_W;
MWa1b1 = a1*b1 + a1*b3*MED_W;
HWa1b1 = a1*b1 + a1*b3*HIGH_W;
LWa2b2 = a2*b2 + a2*b4*LOW_W;
MWa2b2 = a2*b2 + a2*b4*MED_W;
HWa2b2 = a2*b2 + a2*b4*HIGH_W;
LWa1d1b2 = a1*d1*b2 + a1*d1*b4*LOW_W;
MWa1d1b2 = a1*d1*b2 + a1*d1*b4*MED_W;
HWa1d1b2 = a1*d1*b2 + a1*d1*b4*HIGH_W;
IMM_A = a1*b3;
IMM_B = a1*d1*b4;
IMM_C = a2*b4;
DIR_LW = cdash1 + cdash3*LOW_W;
DIR_MW = cdash1 + cdash3*MED_W;
DIR_HW = cdash1 + cdash3*HIGH_W;
TOT_LOWW = LWa1d1b2 + LWa2b2 + LWa1b1 + DIR_LW;
TOT_MEDW = MWa1d1b2 + MWa2b2 + MWa1b1 + DIR_MW;
TOT_HIW = HWa1d1b2 + HWa2b2 + HWa1b1 + DIR_HW;
! Use loop plot to plot total effect of X on Y for low, med, high values of W
! NOTE - values of 1,5 in LOOP() statement need to be replaced by
! logical min and max limits of predictor X used in analysis
PLOT(LOMOD MEDMOD HIMOD);
LOOP(XVAL,1,5,0.1);
LOMOD = TOT_LOWW*XVAL;
MEDMOD = TOT_MEDW*XVAL;
HIMOD = TOT_HIW*XVAL;
PLOT:
TYPE = plot2;
OUTPUT:
STAND CINT(bcbootstrap);