Mplus model89 模型讲解

来自图书《MPlus中介调节模型》

多重中介模型中调节效应:Mplus速查手册

  • 理论模型
  • 数学模型
  • 数学推导
  • 代码解读

理论模型

数学模型

数学公式1

模型方程:

Y = b0 + b1M1 + b2M2 + b3W + b4M1W + b5M2W + c1'X + c2'W + c3'XW
M1 = a01 + a1X
M2 = a02 + a2X + d1M1

数学公式2

模型方程:

Y = b0 + b1M1 + b2M2 + b3W + b4M1W + b5M2W + c1'X + c2'W + c3'XW
M1 = a01 + a1X
M2 = a02 + a2X + d1M1
替换 M1 和 M2:

Y = b0 + b1(a01 + a1X) + b2(a02 + a2X + d1(a01 + a1X)) + b3(a01 + a1X)W + b4(a02 + a2X + d1(a01 + a1X))W + c1'X + c2'W + c3'XW

数学公式3

模型方程:

Y = b0 + b1M1 + b2M2 + b3W + b4M1W + b5M2W + c1'X + c2'W + c3'XW
M1 = a01 + a1X
M2 = a02 + a2X + d1M1
替换 M1 和 M2:

Y = b0 + b1(a01 + a1X) + b2(a02 + a2X + d1(a01 + a1X)) + b3(a01 + a1X)W + b4(a02 + a2X + d1(a01 + a1X))W + c1'X + c2'W + c3'XW
展开括号:

Y = b0 + a01b1 + a1b1X + a02b2 + a2b2X + a01d1b2 + a1d1b2X + a01b3W + a1b3XW + a02b4W + a2b4XW + a01d1b4W + a1d1b4XW + c1'X + c2'W + c3'XW

数学公式4

模型方程:

Y = b0 + b1M1 + b2M2 + b3W + b4M1W + b5M2W + c1'X + c2'W + c3'XW
M1 = a01 + a1X
M2 = a02 + a2X + d1M1
替换 M1 和 M2:

Y = b0 + b1(a01 + a1X) + b2(a02 + a2X + d1(a01 + a1X)) + b3(a01 + a1X)W + b4(a02 + a2X + d1(a01 + a1X))W + c1'X + c2'W + c3'XW
展开括号:

Y = b0 + a01b1 + a1b1X + a02b2 + a2b2X + a01d1b2 + a1d1b2X + a01b3W + a1b3XW + a02b4W + a2b4XW + a01d1b4W + a1d1b4XW + c1'X + c2'W + c3'XW
分组整理:

Y = (b0 + a01b1 + a02b2 + a01d1b2 + a01b3W + a02b4W + a01d1b4W + c2'W) + (a1b1 + a2b2 + a1d1b2 + a1b3W + a2b4W + a1d1b4W + c1' + c3'W)X

数学公式5

模型方程:

Y = b0 + b1M1 + b2M2 + b3W + b4M1W + b5M2W + c1'X + c2'W + c3'XW
M1 = a01 + a1X
M2 = a02 + a2X + d1M1
替换 M1 和 M2:

Y = b0 + b1(a01 + a1X) + b2(a02 + a2X + d1(a01 + a1X)) + b3(a01 + a1X)W + b4(a02 + a2X + d1(a01 + a1X))W + c1'X + c2'W + c3'XW
展开括号:

Y = b0 + a01b1 + a1b1X + a02b2 + a2b2X + a01d1b2 + a1d1b2X + a01b3W + a1b3XW + a02b4W + a2b4XW + a01d1b4W + a1d1b4XW + c1'X + c2'W + c3'XW
分组整理:

Y = (b0 + a01b1 + a02b2 + a01d1b2 + a01b3W + a02b4W + a01d1b4W + c2'W) + (a1b1 + a2b2 + a1d1b2 + a1b3W + a2b4W + a1d1b4W + c1' + c3'W)X
Y = a + bX

其中:

a = b0 + a01b1 + a02b2 + a01d1b2 + a01b3W + a02b4W + a01d1b4W + c2'W
b = a1b1 + a2b2 + a1d1b2 + a1b3W + a2b4W + a1d1b4W + c1' + c3'W

数学公式6

模型方程:

Y = b0 + b1M1 + b2M2 + b3W + b4M1W + b5M2W + c1'X + c2'W + c3'XW
M1 = a01 + a1X
M2 = a02 + a2X + d1M1
替换 M1 和 M2:

Y = b0 + b1(a01 + a1X) + b2(a02 + a2X + d1(a01 + a1X)) + b3(a01 + a1X)W + b4(a02 + a2X + d1(a01 + a1X))W + c1'X + c2'W + c3'XW
展开括号:

Y = b0 + a01b1 + a1b1X + a02b2 + a2b2X + a01d1b2 + a1d1b2X + a01b3W + a1b3XW + a02b4W + a2b4XW + a01d1b4W + a1d1b4XW + c1'X + c2'W + c3'XW
分组整理:

Y = (b0 + a01b1 + a02b2 + a01d1b2 + a01b3W + a02b4W + a01d1b4W + c2'W) + (a1b1 + a2b2 + a1d1b2 + a1b3W + a2b4W + a1d1b4W + c1' + c3'W)X
Y = a + bX

其中:

a = b0 + a01b1 + a02b2 + a01d1b2 + a01b3W + a02b4W + a01d1b4W + c2'W
b = a1b1 + a2b2 + a1d1b2 + a1b3W + a2b4W + a1d1b4W + c1' + c3'W
效应分析:

X 对 Y 的间接效应 (Conditional on W):
*  通过 M1 的间接效应: a1(b1 + b3W)
*  通过 M2 的间接效应: a2(b2 + b4W)
*  通过 M1 和 M2 的间接效应: a1d1(b2 + b4W)

X 对 Y 的直接效应 (Conditional on W):
c1' + c3'W

代码解读1

! Predictor variable - X
! Mediator variable(s) – M1, M2
! Moderator variable(s) - W
! Outcome variable - Y
USEVARIABLES = X M1 M2 W Y XW M1W M2W;

代码解读2

! Predictor variable - X
! Mediator variable(s) – M1, M2
! Moderator variable(s) - W
! Outcome variable - Y
USEVARIABLES = X M1 M2 W Y XW M1W M2W;
DEFINE:
 XW = X*W;
 M1W = M1*W;
 M2W = M2*W;

代码解读3

! Predictor variable - X
! Mediator variable(s) – M1, M2
! Moderator variable(s) - W
! Outcome variable - Y
USEVARIABLES = X M1 M2 W Y XW M1W M2W;
DEFINE:
 XW = X*W;
 M1W = M1*W;
 M2W = M2*W;
ANALYSIS:
 TYPE = GENERAL;
 ESTIMATOR = ML;
 BOOTSTRAP = 10000;

代码解读4

! Predictor variable - X
! Mediator variable(s) – M1, M2
! Moderator variable(s) - W
! Outcome variable - Y
USEVARIABLES = X M1 M2 W Y XW M1W M2W;
DEFINE:
 XW = X*W;
 M1W = M1*W;
 M2W = M2*W;
ANALYSIS:
 TYPE = GENERAL;
 ESTIMATOR = ML;
 BOOTSTRAP = 10000;
MODEL:
 Y ON M1 (b1);
 Y ON M2 (b2);
 Y ON M1W (b3);
 Y ON M2W (b4);
 Y ON X (cdash1);
 Y ON W (cdash2);
 Y ON XW (cdash3);
 M1 ON X (a1);
 M2 ON X (a2);
 M2 ON M1 (d1);

代码解读5

! Predictor variable - X
! Mediator variable(s) – M1, M2
! Moderator variable(s) - W
! Outcome variable - Y
USEVARIABLES = X M1 M2 W Y XW M1W M2W;
DEFINE:
 XW = X*W;
 M1W = M1*W;
 M2W = M2*W;
ANALYSIS:
 TYPE = GENERAL;
 ESTIMATOR = ML;
 BOOTSTRAP = 10000;
MODEL:
 Y ON M1 (b1);
 Y ON M2 (b2);
 Y ON M1W (b3);
 Y ON M2W (b4);
 Y ON X (cdash1);
 Y ON W (cdash2);
 Y ON XW (cdash3);
 M1 ON X (a1);
 M2 ON X (a2);
 M2 ON M1 (d1);
MODEL CONSTRAINT:
 NEW(LOW_W MED_W HIGH_W
 LWa1b1 MWa1b1 HWa1b1
 LWa2b2 MWa2b2 HWa2b2
 LWa1d1b2 MWa1d1b2 HWa1d1b2
 IMM_A IMM_B IMM_C
 DIR_LW DIR_MW DIR_HW
 TOT_LOWW TOT_MEDW TOT_HIW);
 LOW_W = #LOWW;
 MED_W = #MEDW;
 HIGH_W = #HIGHW;
 LWa1b1 = a1*b1 + a1*b3*LOW_W;
 MWa1b1 = a1*b1 + a1*b3*MED_W;
 HWa1b1 = a1*b1 + a1*b3*HIGH_W;
 LWa2b2 = a2*b2 + a2*b4*LOW_W;
 MWa2b2 = a2*b2 + a2*b4*MED_W;
 HWa2b2 = a2*b2 + a2*b4*HIGH_W;
 LWa1d1b2 = a1*d1*b2 + a1*d1*b4*LOW_W;
 MWa1d1b2 = a1*d1*b2 + a1*d1*b4*MED_W;
 HWa1d1b2 = a1*d1*b2 + a1*d1*b4*HIGH_W;
 IMM_A = a1*b3;
 IMM_B = a1*d1*b4;
 IMM_C = a2*b4;
 DIR_LW = cdash1 + cdash3*LOW_W;
 DIR_MW = cdash1 + cdash3*MED_W;
 DIR_HW = cdash1 + cdash3*HIGH_W;
 TOT_LOWW = LWa1d1b2 + LWa2b2 + LWa1b1 + DIR_LW;
 TOT_MEDW = MWa1d1b2 + MWa2b2 + MWa1b1 + DIR_MW;
 TOT_HIW = HWa1d1b2 + HWa2b2 + HWa1b1 + DIR_HW;

代码解读6

! Predictor variable - X
! Mediator variable(s) – M1, M2
! Moderator variable(s) - W
! Outcome variable - Y
USEVARIABLES = X M1 M2 W Y XW M1W M2W;
DEFINE:
 XW = X*W;
 M1W = M1*W;
 M2W = M2*W;
ANALYSIS:
 TYPE = GENERAL;
 ESTIMATOR = ML;
 BOOTSTRAP = 10000;
MODEL:
 Y ON M1 (b1);
 Y ON M2 (b2);
 Y ON M1W (b3);
 Y ON M2W (b4);
 Y ON X (cdash1);
 Y ON W (cdash2);
 Y ON XW (cdash3);
 M1 ON X (a1);
 M2 ON X (a2);
 M2 ON M1 (d1);
MODEL CONSTRAINT:
 NEW(LOW_W MED_W HIGH_W
 LWa1b1 MWa1b1 HWa1b1
 LWa2b2 MWa2b2 HWa2b2
 LWa1d1b2 MWa1d1b2 HWa1d1b2
 IMM_A IMM_B IMM_C
 DIR_LW DIR_MW DIR_HW
 TOT_LOWW TOT_MEDW TOT_HIW);
 LOW_W = #LOWW;
 MED_W = #MEDW;
 HIGH_W = #HIGHW;
 LWa1b1 = a1*b1 + a1*b3*LOW_W;
 MWa1b1 = a1*b1 + a1*b3*MED_W;
 HWa1b1 = a1*b1 + a1*b3*HIGH_W;
 LWa2b2 = a2*b2 + a2*b4*LOW_W;
 MWa2b2 = a2*b2 + a2*b4*MED_W;
 HWa2b2 = a2*b2 + a2*b4*HIGH_W;
 LWa1d1b2 = a1*d1*b2 + a1*d1*b4*LOW_W;
 MWa1d1b2 = a1*d1*b2 + a1*d1*b4*MED_W;
 HWa1d1b2 = a1*d1*b2 + a1*d1*b4*HIGH_W;
 IMM_A = a1*b3;
 IMM_B = a1*d1*b4;
 IMM_C = a2*b4;
 DIR_LW = cdash1 + cdash3*LOW_W;
 DIR_MW = cdash1 + cdash3*MED_W;
 DIR_HW = cdash1 + cdash3*HIGH_W;
 TOT_LOWW = LWa1d1b2 + LWa2b2 + LWa1b1 + DIR_LW;
 TOT_MEDW = MWa1d1b2 + MWa2b2 + MWa1b1 + DIR_MW;
 TOT_HIW = HWa1d1b2 + HWa2b2 + HWa1b1 + DIR_HW;
! Use loop plot to plot total effect of X on Y for low, med, high values of W
! NOTE - values of 1,5 in LOOP() statement need to be replaced by
! logical min and max limits of predictor X used in analysis
 PLOT(LOMOD MEDMOD HIMOD);
 LOOP(XVAL,1,5,0.1);
 LOMOD = TOT_LOWW*XVAL;
 MEDMOD = TOT_MEDW*XVAL;
 HIMOD = TOT_HIW*XVAL;

代码解读7

! Predictor variable - X
! Mediator variable(s) – M1, M2
! Moderator variable(s) - W
! Outcome variable - Y
USEVARIABLES = X M1 M2 W Y XW M1W M2W;
DEFINE:
 XW = X*W;
 M1W = M1*W;
 M2W = M2*W;
ANALYSIS:
 TYPE = GENERAL;
 ESTIMATOR = ML;
 BOOTSTRAP = 10000;
MODEL:
 Y ON M1 (b1);
 Y ON M2 (b2);
 Y ON M1W (b3);
 Y ON M2W (b4);
 Y ON X (cdash1);
 Y ON W (cdash2);
 Y ON XW (cdash3);
 M1 ON X (a1);
 M2 ON X (a2);
 M2 ON M1 (d1);
MODEL CONSTRAINT:
 NEW(LOW_W MED_W HIGH_W
 LWa1b1 MWa1b1 HWa1b1
 LWa2b2 MWa2b2 HWa2b2
 LWa1d1b2 MWa1d1b2 HWa1d1b2
 IMM_A IMM_B IMM_C
 DIR_LW DIR_MW DIR_HW
 TOT_LOWW TOT_MEDW TOT_HIW);
 LOW_W = #LOWW;
 MED_W = #MEDW;
 HIGH_W = #HIGHW;
 LWa1b1 = a1*b1 + a1*b3*LOW_W;
 MWa1b1 = a1*b1 + a1*b3*MED_W;
 HWa1b1 = a1*b1 + a1*b3*HIGH_W;
 LWa2b2 = a2*b2 + a2*b4*LOW_W;
 MWa2b2 = a2*b2 + a2*b4*MED_W;
 HWa2b2 = a2*b2 + a2*b4*HIGH_W;
 LWa1d1b2 = a1*d1*b2 + a1*d1*b4*LOW_W;
 MWa1d1b2 = a1*d1*b2 + a1*d1*b4*MED_W;
 HWa1d1b2 = a1*d1*b2 + a1*d1*b4*HIGH_W;
 IMM_A = a1*b3;
 IMM_B = a1*d1*b4;
 IMM_C = a2*b4;
 DIR_LW = cdash1 + cdash3*LOW_W;
 DIR_MW = cdash1 + cdash3*MED_W;
 DIR_HW = cdash1 + cdash3*HIGH_W;
 TOT_LOWW = LWa1d1b2 + LWa2b2 + LWa1b1 + DIR_LW;
 TOT_MEDW = MWa1d1b2 + MWa2b2 + MWa1b1 + DIR_MW;
 TOT_HIW = HWa1d1b2 + HWa2b2 + HWa1b1 + DIR_HW;
! Use loop plot to plot total effect of X on Y for low, med, high values of W
! NOTE - values of 1,5 in LOOP() statement need to be replaced by
! logical min and max limits of predictor X used in analysis
 PLOT(LOMOD MEDMOD HIMOD);
 LOOP(XVAL,1,5,0.1);
 LOMOD = TOT_LOWW*XVAL;
 MEDMOD = TOT_MEDW*XVAL;
 HIMOD = TOT_HIW*XVAL;
PLOT:
 TYPE = plot2;
OUTPUT:
 STAND CINT(bcbootstrap);

资源汇总

  • 本视频讲义地址: https://mlln.cn/mplus-model-templates/model89.html
  • 图书《MPlus中介调节模型》打包下载: 点击下载
  • 图书《MPlus中介调节模型》在线看: 点击查看
  • 视频教程: 点击这里打开视频
  • Mplus 模型模板教程列表: https://mlln.cn/mplus-model-templates
  • 统计咨询: https://wx.zsxq.com/group/88888188828842