Mplus model87 模型讲解

来自图书《MPlus中介调节模型》

Mplus 教程:调节中介模型(双串行中介)

  • 理论模型
  • 数学模型
  • 模型公式(上一版本说数学推导,但考虑本案例没有复杂推导,改成公式更贴切)
  • 代码解读

理论模型

数学模型

数学公式1

模型方程:

Y = b0 + b1M1 + b2M2 + b3W + b4M2W + c'X
M1 = a01 + a1X
M2 = a02 + a2X + d1M1

数学公式2

模型方程:

Y = b0 + b1M1 + b2M2 + b3W + b4M2W + c'X
M1 = a01 + a1X
M2 = a02 + a2X + d1M1
代入和展开:

Y = b0 + b1(a01 + a1X) + b2(a02 + a2X + d1(a01 + a1X)) + b3W + b4(a02 + a2X + d1(a01 + a1X))W + c'X

Y = b0 + a01b1 + a1b1X + a02b2 + a2b2X + a01d1b2 + a1d1b2X + b3W + a02b4W + a2b4XW + a01d1b4W + a1d1b4XW + c'X

数学公式3

模型方程:

Y = b0 + b1M1 + b2M2 + b3W + b4M2W + c'X
M1 = a01 + a1X
M2 = a02 + a2X + d1M1
代入和展开:

Y = b0 + b1(a01 + a1X) + b2(a02 + a2X + d1(a01 + a1X)) + b3W + b4(a02 + a2X + d1(a01 + a1X))W + c'X

Y = b0 + a01b1 + a1b1X + a02b2 + a2b2X + a01d1b2 + a1d1b2X + b3W + a02b4W + a2b4XW + a01d1b4W + a1d1b4XW + c'X
整理和分组:

Y = (b0 + a01b1 + a02b2 + a01d1b2 + b3W + a02b4W + a01d1b4W) + (a1b1 + a2b2 + a2b4W + a1d1b2 + a1d1b4W + c')X

数学公式4

模型方程:

Y = b0 + b1M1 + b2M2 + b3W + b4M2W + c'X
M1 = a01 + a1X
M2 = a02 + a2X + d1M1
代入和展开:

Y = b0 + b1(a01 + a1X) + b2(a02 + a2X + d1(a01 + a1X)) + b3W + b4(a02 + a2X + d1(a01 + a1X))W + c'X

Y = b0 + a01b1 + a1b1X + a02b2 + a2b2X + a01d1b2 + a1d1b2X + b3W + a02b4W + a2b4XW + a01d1b4W + a1d1b4XW + c'X
整理和分组:

Y = (b0 + a01b1 + a02b2 + a01d1b2 + b3W + a02b4W + a01d1b4W) + (a1b1 + a2b2 + a2b4W + a1d1b2 + a1d1b4W + c')X
间接效应和直接效应:

X 对 Y 的三个条件间接效应:
* a1b1
* a1d1(b2 + b4W)
* a2(b2 + b4W)

X 对 Y 的直接效应:
* c'

代码解读1

! Predictor variable - X
! Mediator variable(s) – M1, M2
! Moderator variable(s) - W
! Outcome variable - Y
USEVARIABLES = X M1 M2 W Y M2W;
! Create interaction term

! Note that it has to be placed at end of USEVARIABLES subcommand above
DEFINE:

 M2W = M2*W;

代码解读2

! Predictor variable - X
! Mediator variable(s) – M1, M2
! Moderator variable(s) - W
! Outcome variable - Y
USEVARIABLES = X M1 M2 W Y M2W;
! Create interaction term

! Note that it has to be placed at end of USEVARIABLES subcommand above
DEFINE:

 M2W = M2*W;
ANALYSIS:

 TYPE = GENERAL;
 ESTIMATOR = ML;
 BOOTSTRAP = 10000;
! In model statement name each path using parentheses
MODEL:

 Y ON M1 (b1);
 Y ON M2 (b2);
 Y ON W (b3);
 Y ON M2W (b4);
 Y ON X (cdash); 
! direct effect of X on Y
 M1 ON X (a1);
 M2 ON X (a2);
 M2 ON M1 (d1);

代码解读3

! Predictor variable - X
! Mediator variable(s) – M1, M2
! Moderator variable(s) - W
! Outcome variable - Y
USEVARIABLES = X M1 M2 W Y M2W;
! Create interaction term

! Note that it has to be placed at end of USEVARIABLES subcommand above
DEFINE:

 M2W = M2*W;
ANALYSIS:

 TYPE = GENERAL;
 ESTIMATOR = ML;
 BOOTSTRAP = 10000;
! In model statement name each path using parentheses
MODEL:

 Y ON M1 (b1);
 Y ON M2 (b2);
 Y ON W (b3);
 Y ON M2W (b4);
 Y ON X (cdash); 
! direct effect of X on Y
 M1 ON X (a1);
 M2 ON X (a2);
 M2 ON M1 (d1);
! Use model constraint subcommand to test simple slopes


! You need to pick low, medium and high moderator values,


! for example, of 1 SD below mean, mean, 1 SD above mean


! Also calc total effects at lo, med, hi values of moderator
MODEL CONSTRAINT:
 NEW(LOW_W MED_W HIGH_W a1b1
 LWa2b2 MWa2b2 HWa2b2
 LWa1d1b2 MWa1d1b2 HWa1d1b2
 IMM_A IMM_B
 TOT_LOWW TOT_MEDW TOT_HIW);
 LOW_W = #LOWW;
! replace #LOWW in the code with your chosen low value of W

 MED_W = #MEDW;
! replace #MEDW in the code with your chosen medium value of W

 HIGH_W = #HIGHW;
! replace #HIGHW in the code with your chosen high value of W
! Now calc indirect and total effects for each value of W
 a1b1 = a1*b1; 
! Specific indirect effect of X on Y via M1 only
! Conditional indirect effects of X on Y via M2 only given values of W
 LWa2b2 = a2*b2 + a2*b4*LOW_W;
 MWa2b2 = a2*b2 + a2*b4*MED_W;
 HWa2b2 = a2*b2 + a2*b4*HIGH_W;
! Conditional indirect effects of X on Y via M1 and M2 given values of W
 LWa1d1b2 = a1*d1*b2 + a1*d1*b4*LOW_W;
 MWa1d1b2 = a1*d1*b2 + a1*d1*b4*MED_W;
 HWa1d1b2 = a1*d1*b2 + a1*d1*b4*HIGH_W;
! Indices of Moderated Mediation
 IMM_A = a2*b4;
 IMM_B = a1*d1*b4;
! Conditional total effects of X on Y given values of W
 TOT_LOWW = LWa1d1b2 + LWa2b2 + a1b1 + cdash;
 TOT_MEDW = MWa1d1b2 + MWa2b2 + a1b1 + cdash ;
 TOT_HIW = HWa1d1b2 + HWa2b2 + a1b1 + cdash;

代码解读4

! Predictor variable - X
! Mediator variable(s) – M1, M2
! Moderator variable(s) - W
! Outcome variable - Y
USEVARIABLES = X M1 M2 W Y M2W;
! Create interaction term

! Note that it has to be placed at end of USEVARIABLES subcommand above
DEFINE:

 M2W = M2*W;
ANALYSIS:

 TYPE = GENERAL;
 ESTIMATOR = ML;
 BOOTSTRAP = 10000;
! In model statement name each path using parentheses
MODEL:

 Y ON M1 (b1);
 Y ON M2 (b2);
 Y ON W (b3);
 Y ON M2W (b4);
 Y ON X (cdash); 
! direct effect of X on Y
 M1 ON X (a1);
 M2 ON X (a2);
 M2 ON M1 (d1);
! Use model constraint subcommand to test simple slopes


! You need to pick low, medium and high moderator values,


! for example, of 1 SD below mean, mean, 1 SD above mean


! Also calc total effects at lo, med, hi values of moderator
MODEL CONSTRAINT:
 NEW(LOW_W MED_W HIGH_W a1b1
 LWa2b2 MWa2b2 HWa2b2
 LWa1d1b2 MWa1d1b2 HWa1d1b2
 IMM_A IMM_B
 TOT_LOWW TOT_MEDW TOT_HIW);
 LOW_W = #LOWW;
! replace #LOWW in the code with your chosen low value of W

 MED_W = #MEDW;
! replace #MEDW in the code with your chosen medium value of W

 HIGH_W = #HIGHW;
! replace #HIGHW in the code with your chosen high value of W
! Now calc indirect and total effects for each value of W
 a1b1 = a1*b1; 
! Specific indirect effect of X on Y via M1 only
! Conditional indirect effects of X on Y via M2 only given values of W
 LWa2b2 = a2*b2 + a2*b4*LOW_W;
 MWa2b2 = a2*b2 + a2*b4*MED_W;
 HWa2b2 = a2*b2 + a2*b4*HIGH_W;
! Conditional indirect effects of X on Y via M1 and M2 given values of W
 LWa1d1b2 = a1*d1*b2 + a1*d1*b4*LOW_W;
 MWa1d1b2 = a1*d1*b2 + a1*d1*b4*MED_W;
 HWa1d1b2 = a1*d1*b2 + a1*d1*b4*HIGH_W;
! Indices of Moderated Mediation
 IMM_A = a2*b4;
 IMM_B = a1*d1*b4;
! Conditional total effects of X on Y given values of W
 TOT_LOWW = LWa1d1b2 + LWa2b2 + a1b1 + cdash;
 TOT_MEDW = MWa1d1b2 + MWa2b2 + a1b1 + cdash ;
 TOT_HIW = HWa1d1b2 + HWa2b2 + a1b1 + cdash;
! Use loop plot to plot total effect of X on Y for low, med, high values of W


! NOTE - values of 1,5 in LOOP() statement need to be replaced by


! logical min and max limits of predictor X used in analysis
 PLOT(LOMOD MEDMOD HIMOD);
 LOOP(XVAL,1,5,0.1);
 LOMOD = TOT_LOWW*XVAL;
 MEDMOD = TOT_MEDW*XVAL;
 HIMOD = TOT_HIW*XVAL;

代码解读5

! Predictor variable - X
! Mediator variable(s) – M1, M2
! Moderator variable(s) - W
! Outcome variable - Y
USEVARIABLES = X M1 M2 W Y M2W;
! Create interaction term

! Note that it has to be placed at end of USEVARIABLES subcommand above
DEFINE:

 M2W = M2*W;
ANALYSIS:

 TYPE = GENERAL;
 ESTIMATOR = ML;
 BOOTSTRAP = 10000;
! In model statement name each path using parentheses
MODEL:

 Y ON M1 (b1);
 Y ON M2 (b2);
 Y ON W (b3);
 Y ON M2W (b4);
 Y ON X (cdash); 
! direct effect of X on Y
 M1 ON X (a1);
 M2 ON X (a2);
 M2 ON M1 (d1);
! Use model constraint subcommand to test simple slopes


! You need to pick low, medium and high moderator values,


! for example, of 1 SD below mean, mean, 1 SD above mean


! Also calc total effects at lo, med, hi values of moderator
MODEL CONSTRAINT:
 NEW(LOW_W MED_W HIGH_W a1b1
 LWa2b2 MWa2b2 HWa2b2
 LWa1d1b2 MWa1d1b2 HWa1d1b2
 IMM_A IMM_B
 TOT_LOWW TOT_MEDW TOT_HIW);
 LOW_W = #LOWW;
! replace #LOWW in the code with your chosen low value of W

 MED_W = #MEDW;
! replace #MEDW in the code with your chosen medium value of W

 HIGH_W = #HIGHW;
! replace #HIGHW in the code with your chosen high value of W
! Now calc indirect and total effects for each value of W
 a1b1 = a1*b1; 
! Specific indirect effect of X on Y via M1 only
! Conditional indirect effects of X on Y via M2 only given values of W
 LWa2b2 = a2*b2 + a2*b4*LOW_W;
 MWa2b2 = a2*b2 + a2*b4*MED_W;
 HWa2b2 = a2*b2 + a2*b4*HIGH_W;
! Conditional indirect effects of X on Y via M1 and M2 given values of W
 LWa1d1b2 = a1*d1*b2 + a1*d1*b4*LOW_W;
 MWa1d1b2 = a1*d1*b2 + a1*d1*b4*MED_W;
 HWa1d1b2 = a1*d1*b2 + a1*d1*b4*HIGH_W;
! Indices of Moderated Mediation
 IMM_A = a2*b4;
 IMM_B = a1*d1*b4;
! Conditional total effects of X on Y given values of W
 TOT_LOWW = LWa1d1b2 + LWa2b2 + a1b1 + cdash;
 TOT_MEDW = MWa1d1b2 + MWa2b2 + a1b1 + cdash ;
 TOT_HIW = HWa1d1b2 + HWa2b2 + a1b1 + cdash;
! Use loop plot to plot total effect of X on Y for low, med, high values of W


! NOTE - values of 1,5 in LOOP() statement need to be replaced by


! logical min and max limits of predictor X used in analysis
 PLOT(LOMOD MEDMOD HIMOD);
 LOOP(XVAL,1,5,0.1);
 LOMOD = TOT_LOWW*XVAL;
 MEDMOD = TOT_MEDW*XVAL;
 HIMOD = TOT_HIW*XVAL;
PLOT:

 TYPE = plot2;
OUTPUT:

 STAND CINT(bcbootstrap);

资源汇总

  • 本视频讲义地址: https://mlln.cn/mplus-model-templates/model87.html
  • 图书《MPlus中介调节模型》打包下载: 点击下载
  • 图书《MPlus中介调节模型》在线看: 点击查看
  • 视频教程: 点击这里打开视频
  • Mplus 模型模板教程列表: https://mlln.cn/mplus-model-templates
  • 统计咨询: https://wx.zsxq.com/group/88888188828842