Mplus model81 模型讲解

来自图书《MPlus中介调节模型》

Mplus 多重中介模型分析教程

  • 理论模型
  • 数学模型
  • 数学推导
  • 代码解读

理论模型

数学模型

数学公式1

模型方程:

Y = b0 + b1M1 + b2M2 + b3M3 + c'X
M1 = a01 + a1X
M2 = a02 + a2X + d1M1
M3 = a03 + a3X + d2M1

数学公式2

模型方程:

Y = b0 + b1M1 + b2M2 + b3M3 + c'X
M1 = a01 + a1X
M2 = a02 + a2X + d1M1
M3 = a03 + a3X + d2M1
将 M1 的表达式代入 Y, M2, M3 的方程中:

Y = b0 + b1(a01 + a1X) + b2M2 + b3M3 + c'X
M2 = a02 + a2X + d1(a01 + a1X)
M3 = a03 + a3X + d2(a01 + a1X)

数学公式3

模型方程:

Y = b0 + b1M1 + b2M2 + b3M3 + c'X
M1 = a01 + a1X
M2 = a02 + a2X + d1M1
M3 = a03 + a3X + d2M1
将 M1 的表达式代入 Y, M2, M3 的方程中:

Y = b0 + b1(a01 + a1X) + b2M2 + b3M3 + c'X
M2 = a02 + a2X + d1(a01 + a1X)
M3 = a03 + a3X + d2(a01 + a1X)
将 M3 的表达式代入 Y 的方程中:

Y = b0 + b1(a01 + a1X) + b2(a02 + a2X + d1(a01 + a1X)) + b3(a03 + a3X + d2(a01 + a1X)) + c'X

数学公式4

模型方程:

Y = b0 + b1M1 + b2M2 + b3M3 + c'X
M1 = a01 + a1X
M2 = a02 + a2X + d1M1
M3 = a03 + a3X + d2M1
将 M1 的表达式代入 Y, M2, M3 的方程中:

Y = b0 + b1(a01 + a1X) + b2M2 + b3M3 + c'X
M2 = a02 + a2X + d1(a01 + a1X)
M3 = a03 + a3X + d2(a01 + a1X)
将 M3 的表达式代入 Y 的方程中:

Y = b0 + b1(a01 + a1X) + b2(a02 + a2X + d1(a01 + a1X)) + b3(a03 + a3X + d2(a01 + a1X)) + c'X
展开括号:

Y = b0 + a01b1 + a1b1X + a02b2 + a2b2X + a01b2d1 + a1b2d1X + a03b3 + a3b3X + a01b3d2 + a1b3d2X + c'X

数学公式5

模型方程:

Y = b0 + b1M1 + b2M2 + b3M3 + c'X
M1 = a01 + a1X
M2 = a02 + a2X + d1M1
M3 = a03 + a3X + d2M1
将 M1 的表达式代入 Y, M2, M3 的方程中:

Y = b0 + b1(a01 + a1X) + b2M2 + b3M3 + c'X
M2 = a02 + a2X + d1(a01 + a1X)
M3 = a03 + a3X + d2(a01 + a1X)
将 M3 的表达式代入 Y 的方程中:

Y = b0 + b1(a01 + a1X) + b2(a02 + a2X + d1(a01 + a1X)) + b3(a03 + a3X + d2(a01 + a1X)) + c'X
展开括号:

Y = b0 + a01b1 + a1b1X + a02b2 + a2b2X + a01b2d1 + a1b2d1X + a03b3 + a3b3X + a01b3d2 + a1b3d2X + c'X
合并同类项,整理成 Y = a + bX 的形式:

Y = (b0 + a01b1 + a02b2 + a01b2d1 + a03b3 + a01b3d2) + (a1b1 + a2b2 + a3b3 + a1b2d1 + a1b3d2 + c')X

数学公式6

模型方程:

Y = b0 + b1M1 + b2M2 + b3M3 + c'X
M1 = a01 + a1X
M2 = a02 + a2X + d1M1
M3 = a03 + a3X + d2M1
将 M1 的表达式代入 Y, M2, M3 的方程中:

Y = b0 + b1(a01 + a1X) + b2M2 + b3M3 + c'X
M2 = a02 + a2X + d1(a01 + a1X)
M3 = a03 + a3X + d2(a01 + a1X)
将 M3 的表达式代入 Y 的方程中:

Y = b0 + b1(a01 + a1X) + b2(a02 + a2X + d1(a01 + a1X)) + b3(a03 + a3X + d2(a01 + a1X)) + c'X
展开括号:

Y = b0 + a01b1 + a1b1X + a02b2 + a2b2X + a01b2d1 + a1b2d1X + a03b3 + a3b3X + a01b3d2 + a1b3d2X + c'X
合并同类项,整理成 Y = a + bX 的形式:

Y = (b0 + a01b1 + a02b2 + a01b2d1 + a03b3 + a01b3d2) + (a1b1 + a2b2 + a3b3 + a1b2d1 + a1b3d2 + c')X
最终结果:

截距项(常数项)为:b0 + a01b1 + a02b2 + a01b2d1 + a03b3 + a01b3d2
X 的总效应(系数)为:a1b1 + a2b2 + a3b3 + a1b2d1 + a1b3d2 + c'

数学公式7

模型方程:

Y = b0 + b1M1 + b2M2 + b3M3 + c'X
M1 = a01 + a1X
M2 = a02 + a2X + d1M1
M3 = a03 + a3X + d2M1
将 M1 的表达式代入 Y, M2, M3 的方程中:

Y = b0 + b1(a01 + a1X) + b2M2 + b3M3 + c'X
M2 = a02 + a2X + d1(a01 + a1X)
M3 = a03 + a3X + d2(a01 + a1X)
将 M3 的表达式代入 Y 的方程中:

Y = b0 + b1(a01 + a1X) + b2(a02 + a2X + d1(a01 + a1X)) + b3(a03 + a3X + d2(a01 + a1X)) + c'X
展开括号:

Y = b0 + a01b1 + a1b1X + a02b2 + a2b2X + a01b2d1 + a1b2d1X + a03b3 + a3b3X + a01b3d2 + a1b3d2X + c'X
合并同类项,整理成 Y = a + bX 的形式:

Y = (b0 + a01b1 + a02b2 + a01b2d1 + a03b3 + a01b3d2) + (a1b1 + a2b2 + a3b3 + a1b2d1 + a1b3d2 + c')X
最终结果:

截距项(常数项)为:b0 + a01b1 + a02b2 + a01b2d1 + a03b3 + a01b3d2
X 的总效应(系数)为:a1b1 + a2b2 + a3b3 + a1b2d1 + a1b3d2 + c'
间接效应和直接效应:

X 对 Y 的五种间接效应分别是:a1b1, a2b2, a3b3, a1d1b2, a1d2b3
X 对 Y 的直接效应为:c'

代码解读1

! Predictor variable - X
! Mediator variable(s) – M1, M2, M3
! Moderator variable(s) - none
! Outcome variable - Y
USEVARIABLES = X M1 M2 M3 Y;

代码解读2

! Predictor variable - X
! Mediator variable(s) – M1, M2, M3
! Moderator variable(s) - none
! Outcome variable - Y
USEVARIABLES = X M1 M2 M3 Y;
ANALYSIS:

 TYPE = GENERAL;
 ESTIMATOR = ML;
 BOOTSTRAP = 10000;

代码解读3

! Predictor variable - X
! Mediator variable(s) – M1, M2, M3
! Moderator variable(s) - none
! Outcome variable - Y
USEVARIABLES = X M1 M2 M3 Y;
ANALYSIS:

 TYPE = GENERAL;
 ESTIMATOR = ML;
 BOOTSTRAP = 10000;
! In model statement name each path using parentheses
MODEL:

 Y ON M1 (b1);
 Y ON M2 (b2);
 Y ON M3 (b3);
 Y ON X (cdash); 
! direct effect of X on Y
 M1 ON X (a1);
 M2 ON X (a2);
 M3 ON X (a3);
 M2 ON M1 (d1);
 M3 ON M1 (d2);

代码解读4

! Predictor variable - X
! Mediator variable(s) – M1, M2, M3
! Moderator variable(s) - none
! Outcome variable - Y
USEVARIABLES = X M1 M2 M3 Y;
ANALYSIS:

 TYPE = GENERAL;
 ESTIMATOR = ML;
 BOOTSTRAP = 10000;
! In model statement name each path using parentheses
MODEL:

 Y ON M1 (b1);
 Y ON M2 (b2);
 Y ON M3 (b3);
 Y ON X (cdash); 
! direct effect of X on Y
 M1 ON X (a1);
 M2 ON X (a2);
 M3 ON X (a3);
 M2 ON M1 (d1);
 M3 ON M1 (d2);
! Use model constraint to calculate specific indirect paths and total indirect effect
MODEL CONSTRAINT:
 NEW(a1b1 a2b2 a3b3 a1d1b2 a1d2b3 TOTALIND TOTAL);
 a1b1 = a1*b1; 
! Specific indirect effect of X on Y via M1 only

 a2b2 = a2*b2; 
! Specific indirect effect of X on Y via M2 only

 a3b3 = a3*b3; 
! Specific indirect effect of X on Y via M3 only

 a1d1b2 = a1*d1*b2; 
! Specific indirect effect of X on Y via M1 and M2

 a1d2b3 = a1*d2*b3; 
! Specific indirect effect of X on Y via M1 and M3

 TOTALIND = a1b1 + a2b2 + a3b3 + a1d1b2 + a1d2b3; 
! Total indirect effect of X on Y via M1, M2, M3

 TOTAL = a1b1 + a2b2 + a3b3 + a1d1b2 + a1d2b3 + cdash; 
! Total effect of X on Y

代码解读5

! Predictor variable - X
! Mediator variable(s) – M1, M2, M3
! Moderator variable(s) - none
! Outcome variable - Y
USEVARIABLES = X M1 M2 M3 Y;
ANALYSIS:

 TYPE = GENERAL;
 ESTIMATOR = ML;
 BOOTSTRAP = 10000;
! In model statement name each path using parentheses
MODEL:

 Y ON M1 (b1);
 Y ON M2 (b2);
 Y ON M3 (b3);
 Y ON X (cdash); 
! direct effect of X on Y
 M1 ON X (a1);
 M2 ON X (a2);
 M3 ON X (a3);
 M2 ON M1 (d1);
 M3 ON M1 (d2);
! Use model constraint to calculate specific indirect paths and total indirect effect
MODEL CONSTRAINT:
 NEW(a1b1 a2b2 a3b3 a1d1b2 a1d2b3 TOTALIND TOTAL);
 a1b1 = a1*b1; 
! Specific indirect effect of X on Y via M1 only

 a2b2 = a2*b2; 
! Specific indirect effect of X on Y via M2 only

 a3b3 = a3*b3; 
! Specific indirect effect of X on Y via M3 only

 a1d1b2 = a1*d1*b2; 
! Specific indirect effect of X on Y via M1 and M2

 a1d2b3 = a1*d2*b3; 
! Specific indirect effect of X on Y via M1 and M3

 TOTALIND = a1b1 + a2b2 + a3b3 + a1d1b2 + a1d2b3; 
! Total indirect effect of X on Y via M1, M2, M3

 TOTAL = a1b1 + a2b2 + a3b3 + a1d1b2 + a1d2b3 + cdash; 
! Total effect of X on Y
OUTPUT:

 STAND CINT(bcbootstrap);

资源汇总

  • 本视频讲义地址: https://mlln.cn/mplus-model-templates/model81.html
  • 图书《MPlus中介调节模型》打包下载: 点击下载
  • 图书《MPlus中介调节模型》在线看: 点击查看
  • 视频教程: 点击这里打开视频
  • Mplus 模型模板教程列表: https://mlln.cn/mplus-model-templates
  • 统计咨询: https://wx.zsxq.com/group/88888188828842