Mplus model7latent 模型讲解

来自图书《MPlus中介调节模型》

使用Mplus分析复杂模型:中介、调节与调节中介模型

  • 理论模型
  • 数学模型
  • 数学推导
  • 代码解读

理论模型

数学模型

数学公式1

Y = b0 + b1M + c'X

数学公式2

Y = b0 + b1M + c'X
M = a0 + a1X + a2W + a3XW

数学公式3

Y = b0 + b1M + c'X
M = a0 + a1X + a2W + a3XW
Y = b0 + b1(a0 + a1X + a2W + a3XW) + c'X

数学公式4

Y = b0 + b1M + c'X
M = a0 + a1X + a2W + a3XW
Y = b0 + b1(a0 + a1X + a2W + a3XW) + c'X
Y = b0 + a0b1 + a1b1X + a2b1W + a3b1XW + c'X

数学公式5

Y = b0 + b1M + c'X
M = a0 + a1X + a2W + a3XW
Y = b0 + b1(a0 + a1X + a2W + a3XW) + c'X
Y = b0 + a0b1 + a1b1X + a2b1W + a3b1XW + c'X
Y = (b0 + a0b1 + a2b1W) + (a1b1 + a3b1W + c')X

数学公式6

Y = b0 + b1M + c'X
M = a0 + a1X + a2W + a3XW
Y = b0 + b1(a0 + a1X + a2W + a3XW) + c'X
Y = b0 + a0b1 + a1b1X + a2b1W + a3b1XW + c'X
Y = (b0 + a0b1 + a2b1W) + (a1b1 + a3b1W + c')X
X 对 Y 的间接效应 (取决于 W): a1b1 + a3b1W = (a1 + a3W)b1

数学公式7

Y = b0 + b1M + c'X
M = a0 + a1X + a2W + a3XW
Y = b0 + b1(a0 + a1X + a2W + a3XW) + c'X
Y = b0 + a0b1 + a1b1X + a2b1W + a3b1XW + c'X
Y = (b0 + a0b1 + a2b1W) + (a1b1 + a3b1W + c')X
X 对 Y 的间接效应 (取决于 W): a1b1 + a3b1W = (a1 + a3W)b1
X 对 Y 的直接效应: c'

代码解读1

USEVARIABLES = X1 X2 X3 X4 M1 M2 M3 M4 W1 W2 W3 W4 Y1 Y2 Y3 Y4;

代码解读2

USEVARIABLES = X1 X2 X3 X4 M1 M2 M3 M4 W1 W2 W3 W4 Y1 Y2 Y3 Y4;
ANALYSIS:

代码解读3

USEVARIABLES = X1 X2 X3 X4 M1 M2 M3 M4 W1 W2 W3 W4 Y1 Y2 Y3 Y4;
ANALYSIS:
TYPE = GENERAL RANDOM; ESTIMATOR = ML; ALGORITHM = INTEGRATION;

代码解读4

USEVARIABLES = X1 X2 X3 X4 M1 M2 M3 M4 W1 W2 W3 W4 Y1 Y2 Y3 Y4;
ANALYSIS:
TYPE = GENERAL RANDOM; ESTIMATOR = ML; ALGORITHM = INTEGRATION;
MODEL:

代码解读5

USEVARIABLES = X1 X2 X3 X4 M1 M2 M3 M4 W1 W2 W3 W4 Y1 Y2 Y3 Y4;
ANALYSIS:
TYPE = GENERAL RANDOM; ESTIMATOR = ML; ALGORITHM = INTEGRATION;
MODEL:
X BY X1 X2 X3 X4; M BY M1 M2 M3 M4; W BY W1* W2 W3 W4; Y BY Y1 Y2 Y3 Y4;

代码解读6

USEVARIABLES = X1 X2 X3 X4 M1 M2 M3 M4 W1 W2 W3 W4 Y1 Y2 Y3 Y4;
ANALYSIS:
TYPE = GENERAL RANDOM; ESTIMATOR = ML; ALGORITHM = INTEGRATION;
MODEL:
X BY X1 X2 X3 X4; M BY M1 M2 M3 M4; W BY W1* W2 W3 W4; Y BY Y1 Y2 Y3 Y4;
W@1;

代码解读7

USEVARIABLES = X1 X2 X3 X4 M1 M2 M3 M4 W1 W2 W3 W4 Y1 Y2 Y3 Y4;
ANALYSIS:
TYPE = GENERAL RANDOM; ESTIMATOR = ML; ALGORITHM = INTEGRATION;
MODEL:
X BY X1 X2 X3 X4; M BY M1 M2 M3 M4; W BY W1* W2 W3 W4; Y BY Y1 Y2 Y3 Y4;
W@1;
XW | X XWITH W;

代码解读8

USEVARIABLES = X1 X2 X3 X4 M1 M2 M3 M4 W1 W2 W3 W4 Y1 Y2 Y3 Y4;
ANALYSIS:
TYPE = GENERAL RANDOM; ESTIMATOR = ML; ALGORITHM = INTEGRATION;
MODEL:
X BY X1 X2 X3 X4; M BY M1 M2 M3 M4; W BY W1* W2 W3 W4; Y BY Y1 Y2 Y3 Y4;
W@1;
XW | X XWITH W;
Y ON M (b1); Y ON X (cdash); M ON X (a1); M ON W (a2); M ON XW (a3);

代码解读9

USEVARIABLES = X1 X2 X3 X4 M1 M2 M3 M4 W1 W2 W3 W4 Y1 Y2 Y3 Y4;
ANALYSIS:
TYPE = GENERAL RANDOM; ESTIMATOR = ML; ALGORITHM = INTEGRATION;
MODEL:
X BY X1 X2 X3 X4; M BY M1 M2 M3 M4; W BY W1* W2 W3 W4; Y BY Y1 Y2 Y3 Y4;
W@1;
XW | X XWITH W;
Y ON M (b1); Y ON X (cdash); M ON X (a1); M ON W (a2); M ON XW (a3);
MODEL CONSTRAINT:

代码解读10

USEVARIABLES = X1 X2 X3 X4 M1 M2 M3 M4 W1 W2 W3 W4 Y1 Y2 Y3 Y4;
ANALYSIS:
TYPE = GENERAL RANDOM; ESTIMATOR = ML; ALGORITHM = INTEGRATION;
MODEL:
X BY X1 X2 X3 X4; M BY M1 M2 M3 M4; W BY W1* W2 W3 W4; Y BY Y1 Y2 Y3 Y4;
W@1;
XW | X XWITH W;
Y ON M (b1); Y ON X (cdash); M ON X (a1); M ON W (a2); M ON XW (a3);
MODEL CONSTRAINT:
NEW(LOW_W MED_W HIGH_W IND_LOWW IND_MEDW IND_HIW IMM TOT_LOWW TOT_MEDW TOT_HIW);

代码解读11

USEVARIABLES = X1 X2 X3 X4 M1 M2 M3 M4 W1 W2 W3 W4 Y1 Y2 Y3 Y4;
ANALYSIS:
TYPE = GENERAL RANDOM; ESTIMATOR = ML; ALGORITHM = INTEGRATION;
MODEL:
X BY X1 X2 X3 X4; M BY M1 M2 M3 M4; W BY W1* W2 W3 W4; Y BY Y1 Y2 Y3 Y4;
W@1;
XW | X XWITH W;
Y ON M (b1); Y ON X (cdash); M ON X (a1); M ON W (a2); M ON XW (a3);
MODEL CONSTRAINT:
NEW(LOW_W MED_W HIGH_W IND_LOWW IND_MEDW IND_HIW IMM TOT_LOWW TOT_MEDW TOT_HIW);
LOW_W = -1; MED_W = 0; HIGH_W = 1;

代码解读12

USEVARIABLES = X1 X2 X3 X4 M1 M2 M3 M4 W1 W2 W3 W4 Y1 Y2 Y3 Y4;
ANALYSIS:
TYPE = GENERAL RANDOM; ESTIMATOR = ML; ALGORITHM = INTEGRATION;
MODEL:
X BY X1 X2 X3 X4; M BY M1 M2 M3 M4; W BY W1* W2 W3 W4; Y BY Y1 Y2 Y3 Y4;
W@1;
XW | X XWITH W;
Y ON M (b1); Y ON X (cdash); M ON X (a1); M ON W (a2); M ON XW (a3);
MODEL CONSTRAINT:
NEW(LOW_W MED_W HIGH_W IND_LOWW IND_MEDW IND_HIW IMM TOT_LOWW TOT_MEDW TOT_HIW);
LOW_W = -1; MED_W = 0; HIGH_W = 1;
IND_LOWW = a1*b1 + a3*b1*LOW_W; IND_MEDW = a1*b1 + a3*b1*MED_W; IND_HIW = a1*b1 + a3*b1*HIGH_W;

代码解读13

USEVARIABLES = X1 X2 X3 X4 M1 M2 M3 M4 W1 W2 W3 W4 Y1 Y2 Y3 Y4;
ANALYSIS:
TYPE = GENERAL RANDOM; ESTIMATOR = ML; ALGORITHM = INTEGRATION;
MODEL:
X BY X1 X2 X3 X4; M BY M1 M2 M3 M4; W BY W1* W2 W3 W4; Y BY Y1 Y2 Y3 Y4;
W@1;
XW | X XWITH W;
Y ON M (b1); Y ON X (cdash); M ON X (a1); M ON W (a2); M ON XW (a3);
MODEL CONSTRAINT:
NEW(LOW_W MED_W HIGH_W IND_LOWW IND_MEDW IND_HIW IMM TOT_LOWW TOT_MEDW TOT_HIW);
LOW_W = -1; MED_W = 0; HIGH_W = 1;
IND_LOWW = a1*b1 + a3*b1*LOW_W; IND_MEDW = a1*b1 + a3*b1*MED_W; IND_HIW = a1*b1 + a3*b1*HIGH_W;
IMM = a3*b1;

代码解读14

USEVARIABLES = X1 X2 X3 X4 M1 M2 M3 M4 W1 W2 W3 W4 Y1 Y2 Y3 Y4;
ANALYSIS:
TYPE = GENERAL RANDOM; ESTIMATOR = ML; ALGORITHM = INTEGRATION;
MODEL:
X BY X1 X2 X3 X4; M BY M1 M2 M3 M4; W BY W1* W2 W3 W4; Y BY Y1 Y2 Y3 Y4;
W@1;
XW | X XWITH W;
Y ON M (b1); Y ON X (cdash); M ON X (a1); M ON W (a2); M ON XW (a3);
MODEL CONSTRAINT:
NEW(LOW_W MED_W HIGH_W IND_LOWW IND_MEDW IND_HIW IMM TOT_LOWW TOT_MEDW TOT_HIW);
LOW_W = -1; MED_W = 0; HIGH_W = 1;
IND_LOWW = a1*b1 + a3*b1*LOW_W; IND_MEDW = a1*b1 + a3*b1*MED_W; IND_HIW = a1*b1 + a3*b1*HIGH_W;
IMM = a3*b1;
TOT_LOWW = IND_LOWW + cdash; TOT_MEDW = IND_MEDW + cdash; TOT_HIW = IND_HIW + cdash;

代码解读15

USEVARIABLES = X1 X2 X3 X4 M1 M2 M3 M4 W1 W2 W3 W4 Y1 Y2 Y3 Y4;
ANALYSIS:
TYPE = GENERAL RANDOM; ESTIMATOR = ML; ALGORITHM = INTEGRATION;
MODEL:
X BY X1 X2 X3 X4; M BY M1 M2 M3 M4; W BY W1* W2 W3 W4; Y BY Y1 Y2 Y3 Y4;
W@1;
XW | X XWITH W;
Y ON M (b1); Y ON X (cdash); M ON X (a1); M ON W (a2); M ON XW (a3);
MODEL CONSTRAINT:
NEW(LOW_W MED_W HIGH_W IND_LOWW IND_MEDW IND_HIW IMM TOT_LOWW TOT_MEDW TOT_HIW);
LOW_W = -1; MED_W = 0; HIGH_W = 1;
IND_LOWW = a1*b1 + a3*b1*LOW_W; IND_MEDW = a1*b1 + a3*b1*MED_W; IND_HIW = a1*b1 + a3*b1*HIGH_W;
IMM = a3*b1;
TOT_LOWW = IND_LOWW + cdash; TOT_MEDW = IND_MEDW + cdash; TOT_HIW = IND_HIW + cdash;
PLOT(LOMOD MEDMOD HIMOD); LOOP(XVAL,-3,3,0.1); LOMOD = IND_LOWW*XVAL; MEDMOD = IND_MEDW*XVAL; HIMOD = IND_HIW*XVAL;

代码解读16

USEVARIABLES = X1 X2 X3 X4 M1 M2 M3 M4 W1 W2 W3 W4 Y1 Y2 Y3 Y4;
ANALYSIS:
TYPE = GENERAL RANDOM; ESTIMATOR = ML; ALGORITHM = INTEGRATION;
MODEL:
X BY X1 X2 X3 X4; M BY M1 M2 M3 M4; W BY W1* W2 W3 W4; Y BY Y1 Y2 Y3 Y4;
W@1;
XW | X XWITH W;
Y ON M (b1); Y ON X (cdash); M ON X (a1); M ON W (a2); M ON XW (a3);
MODEL CONSTRAINT:
NEW(LOW_W MED_W HIGH_W IND_LOWW IND_MEDW IND_HIW IMM TOT_LOWW TOT_MEDW TOT_HIW);
LOW_W = -1; MED_W = 0; HIGH_W = 1;
IND_LOWW = a1*b1 + a3*b1*LOW_W; IND_MEDW = a1*b1 + a3*b1*MED_W; IND_HIW = a1*b1 + a3*b1*HIGH_W;
IMM = a3*b1;
TOT_LOWW = IND_LOWW + cdash; TOT_MEDW = IND_MEDW + cdash; TOT_HIW = IND_HIW + cdash;
PLOT(LOMOD MEDMOD HIMOD); LOOP(XVAL,-3,3,0.1); LOMOD = IND_LOWW*XVAL; MEDMOD = IND_MEDW*XVAL; HIMOD = IND_HIW*XVAL;
PLOT: TYPE = plot2;

代码解读17

USEVARIABLES = X1 X2 X3 X4 M1 M2 M3 M4 W1 W2 W3 W4 Y1 Y2 Y3 Y4;
ANALYSIS:
TYPE = GENERAL RANDOM; ESTIMATOR = ML; ALGORITHM = INTEGRATION;
MODEL:
X BY X1 X2 X3 X4; M BY M1 M2 M3 M4; W BY W1* W2 W3 W4; Y BY Y1 Y2 Y3 Y4;
W@1;
XW | X XWITH W;
Y ON M (b1); Y ON X (cdash); M ON X (a1); M ON W (a2); M ON XW (a3);
MODEL CONSTRAINT:
NEW(LOW_W MED_W HIGH_W IND_LOWW IND_MEDW IND_HIW IMM TOT_LOWW TOT_MEDW TOT_HIW);
LOW_W = -1; MED_W = 0; HIGH_W = 1;
IND_LOWW = a1*b1 + a3*b1*LOW_W; IND_MEDW = a1*b1 + a3*b1*MED_W; IND_HIW = a1*b1 + a3*b1*HIGH_W;
IMM = a3*b1;
TOT_LOWW = IND_LOWW + cdash; TOT_MEDW = IND_MEDW + cdash; TOT_HIW = IND_HIW + cdash;
PLOT(LOMOD MEDMOD HIMOD); LOOP(XVAL,-3,3,0.1); LOMOD = IND_LOWW*XVAL; MEDMOD = IND_MEDW*XVAL; HIMOD = IND_HIW*XVAL;
PLOT: TYPE = plot2;
OUTPUT: CINT;

资源汇总

  • 本视频讲义地址: https://mlln.cn/mplus-model-templates/model7latent.html
  • 图书《MPlus中介调节模型》打包下载: 点击下载
  • 图书《MPlus中介调节模型》在线看: 点击查看
  • 视频教程: 点击这里打开视频
  • Mplus 模型模板教程列表: https://mlln.cn/mplus-model-templates
  • 统计咨询: https://wx.zsxq.com/group/88888188828842