Mplus model73latent 模型讲解

来自图书《MPlus中介调节模型》

Mplus 复杂潜变量模型快速查阅

  • 理论模型
  • 数学模型
  • 数学推导
  • 代码解读

理论模型

数学模型

数学公式1

模型方程:

Y = b0 + b1M + b2MW + b3MZ + b4MWZ + c1'X + c2W + c3'Z + c4'XW + c5'XZ + c6'WZ + c7'XWZ

M = a0 + a1X + a2W + a3Z + a4XW + a5XZ + a6WZ + a7XWZ

数学公式2

模型方程:

Y = b0 + b1M + b2MW + b3MZ + b4MWZ + c1'X + c2W + c3'Z + c4'XW + c5'XZ + c6'WZ + c7'XWZ

M = a0 + a1X + a2W + a3Z + a4XW + a5XZ + a6WZ + a7XWZ
代入与展开:

Y = b0 + b1(a0 + a1X + a2W + a3Z + a4XW + a5XZ + a6WZ + a7XWZ) + b2(a0 + a1X + a2W + a3Z + a4XW + a5XZ + a6WZ + a7XWZ)W + b3(a0 + a1X + a2W + a3Z + a4XW + a5XZ + a6WZ + a7XWZ)Z + b4(a0 + a1X + a2W + a3Z + a4XW + a5XZ + a6WZ + a7XWZ)WZ + c1'X + c2W + c3'Z + c4'XW + c5'XZ + c6'WZ + c7'XWZ

展开后:

Y = b0 + a0b1 + a1b1X + a2b1W + a3b1Z + a4b1XW + a5b1XZ + a6b1WZ + a7b1XWZ + a0b2W + a1b2XW + a2b2WW + a3b2ZW + a4b2XWW + a5b2XZW + a6b2WWZ + a7b2XWWZ + a0b3Z + a1b3XZ + a2b3WZ + a3b3ZZ + a4b3XWZ + a5b3XZZ + a6b3WZZ + a7b3XWZZ + a0b4WZ + a1b4XWZ + a2b4WWZ + a3b4WZZ + a4b4XWWZ + a5b4XWZZ + a6b4WWZZ + a7b4XWWZZ + c1'X + c2W + c3'Z + c4'XW + c5'XZ + c6'WZ + c7'XWZ

数学公式3

模型方程:

Y = b0 + b1M + b2MW + b3MZ + b4MWZ + c1'X + c2W + c3'Z + c4'XW + c5'XZ + c6'WZ + c7'XWZ

M = a0 + a1X + a2W + a3Z + a4XW + a5XZ + a6WZ + a7XWZ
代入与展开:

Y = b0 + b1(a0 + a1X + a2W + a3Z + a4XW + a5XZ + a6WZ + a7XWZ) + b2(a0 + a1X + a2W + a3Z + a4XW + a5XZ + a6WZ + a7XWZ)W + b3(a0 + a1X + a2W + a3Z + a4XW + a5XZ + a6WZ + a7XWZ)Z + b4(a0 + a1X + a2W + a3Z + a4XW + a5XZ + a6WZ + a7XWZ)WZ + c1'X + c2W + c3'Z + c4'XW + c5'XZ + c6'WZ + c7'XWZ

展开后:

Y = b0 + a0b1 + a1b1X + a2b1W + a3b1Z + a4b1XW + a5b1XZ + a6b1WZ + a7b1XWZ + a0b2W + a1b2XW + a2b2WW + a3b2ZW + a4b2XWW + a5b2XZW + a6b2WWZ + a7b2XWWZ + a0b3Z + a1b3XZ + a2b3WZ + a3b3ZZ + a4b3XWZ + a5b3XZZ + a6b3WZZ + a7b3XWZZ + a0b4WZ + a1b4XWZ + a2b4WWZ + a3b4WZZ + a4b4XWWZ + a5b4XWZZ + a6b4WWZZ + a7b4XWWZZ + c1'X + c2W + c3'Z + c4'XW + c5'XZ + c6'WZ + c7'XWZ
分组与简化:

Y = (b0 + a0b1 + a2b1W + a3b1Z + a6b1WZ + a0b2W + a2b2WW + a3b2ZW + a6b2WWZ + a0b3Z + a2b3WZ + a3b3ZZ + a6b3WZZ + a0b4WZ + a2b4WWZ + a3b4WZZ + a6b4WWZZ+ c2W + c3'Z + c6'WZ) + (a1b1 + a4b1W + a5b1Z + a7b1WZ + a1b2W + a4b2WW + a5b2ZW + a7b2WWZ + a1b3Z + a4b3WZ + a5b3ZZ + a7b3WZZ + a1b4WZ + a4b4WWZ + a5b4WZZ + a7b4WWZZ + c1' + c4'W + c5'Z + c7'WZ)X

数学公式4

模型方程:

Y = b0 + b1M + b2MW + b3MZ + b4MWZ + c1'X + c2W + c3'Z + c4'XW + c5'XZ + c6'WZ + c7'XWZ

M = a0 + a1X + a2W + a3Z + a4XW + a5XZ + a6WZ + a7XWZ
代入与展开:

Y = b0 + b1(a0 + a1X + a2W + a3Z + a4XW + a5XZ + a6WZ + a7XWZ) + b2(a0 + a1X + a2W + a3Z + a4XW + a5XZ + a6WZ + a7XWZ)W + b3(a0 + a1X + a2W + a3Z + a4XW + a5XZ + a6WZ + a7XWZ)Z + b4(a0 + a1X + a2W + a3Z + a4XW + a5XZ + a6WZ + a7XWZ)WZ + c1'X + c2W + c3'Z + c4'XW + c5'XZ + c6'WZ + c7'XWZ

展开后:

Y = b0 + a0b1 + a1b1X + a2b1W + a3b1Z + a4b1XW + a5b1XZ + a6b1WZ + a7b1XWZ + a0b2W + a1b2XW + a2b2WW + a3b2ZW + a4b2XWW + a5b2XZW + a6b2WWZ + a7b2XWWZ + a0b3Z + a1b3XZ + a2b3WZ + a3b3ZZ + a4b3XWZ + a5b3XZZ + a6b3WZZ + a7b3XWZZ + a0b4WZ + a1b4XWZ + a2b4WWZ + a3b4WZZ + a4b4XWWZ + a5b4XWZZ + a6b4WWZZ + a7b4XWWZZ + c1'X + c2W + c3'Z + c4'XW + c5'XZ + c6'WZ + c7'XWZ
分组与简化:

Y = (b0 + a0b1 + a2b1W + a3b1Z + a6b1WZ + a0b2W + a2b2WW + a3b2ZW + a6b2WWZ + a0b3Z + a2b3WZ + a3b3ZZ + a6b3WZZ + a0b4WZ + a2b4WWZ + a3b4WZZ + a6b4WWZZ+ c2W + c3'Z + c6'WZ) + (a1b1 + a4b1W + a5b1Z + a7b1WZ + a1b2W + a4b2WW + a5b2ZW + a7b2WWZ + a1b3Z + a4b3WZ + a5b3ZZ + a7b3WZZ + a1b4WZ + a4b4WWZ + a5b4WZZ + a7b4WWZZ + c1' + c4'W + c5'Z + c7'WZ)X
提取效应:

X对Y的条件间接效应:

a1b1 + a4b1W + a5b1Z + a7b1WZ + a1b2W + a4b2WW + a5b2ZW + a7b2WWZ + a1b3Z + a4b3WZ + a5b3ZZ + a7b3WZZ + a1b4WZ + a4b4WWZ + a5b4WZZ + a7b4WWZZ

也可以简化为:

(a1 + a4W + a5Z + a7WZ)(b1 + b2W + b3Z + b4WZ)

X对Y的条件直接效应:

c1' + c4'W + c5'Z + c7'WZ

代码解读1

USEVARIABLES = X1 X2 X3 X4 M1 M2 M3 M4
W1 W2 W3 W4 Z1 Z2 Z3 Z4
Y1 Y2 Y3 Y4;

代码解读2

USEVARIABLES = X1 X2 X3 X4 M1 M2 M3 M4
W1 W2 W3 W4 Z1 Z2 Z3 Z4
Y1 Y2 Y3 Y4;
ANALYSIS:
 TYPE = GENERAL RANDOM;
 ESTIMATOR = ML;
 ALGORITHM = INTEGRATION;

代码解读3

USEVARIABLES = X1 X2 X3 X4 M1 M2 M3 M4
W1 W2 W3 W4 Z1 Z2 Z3 Z4
Y1 Y2 Y3 Y4;
ANALYSIS:
 TYPE = GENERAL RANDOM;
 ESTIMATOR = ML;
 ALGORITHM = INTEGRATION;
MODEL:
! Measurement model
 X BY X1 X2 X3 X4;
 M BY M1 M2 M3 M4;
 W BY W1* W2 W3 W4;
 Z BY Z1* Z2 Z3 Z4;
 Y BY Y1 Y2 Y3 Y4;
  W@1;  Z@1;

代码解读4

USEVARIABLES = X1 X2 X3 X4 M1 M2 M3 M4
W1 W2 W3 W4 Z1 Z2 Z3 Z4
Y1 Y2 Y3 Y4;
ANALYSIS:
 TYPE = GENERAL RANDOM;
 ESTIMATOR = ML;
 ALGORITHM = INTEGRATION;
MODEL:
! Measurement model
 X BY X1 X2 X3 X4;
 M BY M1 M2 M3 M4;
 W BY W1* W2 W3 W4;
 Z BY Z1* Z2 Z3 Z4;
 Y BY Y1 Y2 Y3 Y4;
  W@1;  Z@1;
! Create latent interactions
 MW | M XWITH W;
 MZ | M XWITH Z;
 XW | X XWITH W;
 XZ | X XWITH Z;
 WZ | W XWITH Z;
 MWZ | M XWITH WZ;
 XWZ | X XWITH WZ;

代码解读5

USEVARIABLES = X1 X2 X3 X4 M1 M2 M3 M4
W1 W2 W3 W4 Z1 Z2 Z3 Z4
Y1 Y2 Y3 Y4;
ANALYSIS:
 TYPE = GENERAL RANDOM;
 ESTIMATOR = ML;
 ALGORITHM = INTEGRATION;
MODEL:
! Measurement model
 X BY X1 X2 X3 X4;
 M BY M1 M2 M3 M4;
 W BY W1* W2 W3 W4;
 Z BY Z1* Z2 Z3 Z4;
 Y BY Y1 Y2 Y3 Y4;
  W@1;  Z@1;
! Create latent interactions
 MW | M XWITH W;
 MZ | M XWITH Z;
 XW | X XWITH W;
 XZ | X XWITH Z;
 WZ | W XWITH Z;
 MWZ | M XWITH WZ;
 XWZ | X XWITH WZ;
! Fit structural model and name parameters
 Y ON M (b1);
 Y ON MW (b2);
 Y ON MZ (b3);
 Y ON MWZ (b4);
 Y ON X(cdash1);
 Y ON W (cdash2);
 Y ON Z (cdash3);
 Y ON XW (cdash4);
 Y ON XZ (cdash5);
 Y ON WZ (cdash6);
 Y ON XWZ (cdash7);
 M ON X (a1);
 M ON W (a2);
 M ON Z (a3);
 M ON XW (a4);
 M ON XZ (a5);
 M ON WZ (a6);
 M ON XWZ (a7);

代码解读6

USEVARIABLES = X1 X2 X3 X4 M1 M2 M3 M4
W1 W2 W3 W4 Z1 Z2 Z3 Z4
Y1 Y2 Y3 Y4;
ANALYSIS:
 TYPE = GENERAL RANDOM;
 ESTIMATOR = ML;
 ALGORITHM = INTEGRATION;
MODEL:
! Measurement model
 X BY X1 X2 X3 X4;
 M BY M1 M2 M3 M4;
 W BY W1* W2 W3 W4;
 Z BY Z1* Z2 Z3 Z4;
 Y BY Y1 Y2 Y3 Y4;
  W@1;  Z@1;
! Create latent interactions
 MW | M XWITH W;
 MZ | M XWITH Z;
 XW | X XWITH W;
 XZ | X XWITH Z;
 WZ | W XWITH Z;
 MWZ | M XWITH WZ;
 XWZ | X XWITH WZ;
! Fit structural model and name parameters
 Y ON M (b1);
 Y ON MW (b2);
 Y ON MZ (b3);
 Y ON MWZ (b4);
 Y ON X(cdash1);
 Y ON W (cdash2);
 Y ON Z (cdash3);
 Y ON XW (cdash4);
 Y ON XZ (cdash5);
 Y ON WZ (cdash6);
 Y ON XWZ (cdash7);
 M ON X (a1);
 M ON W (a2);
 M ON Z (a3);
 M ON XW (a4);
 M ON XZ (a5);
 M ON WZ (a6);
 M ON XWZ (a7);
MODEL CONSTRAINT:
 NEW(LOW_W MED_W HIGH_W LOW_Z MED_Z HIGH_Z
 ILOW_LOZ IMEW_LOZ IHIW_LOZ ILOW_MEZ IMEW_MEZ IHIW_MEZ
 ILOW_HIZ IMEW_HIZ IHIW_HIZ
 DLOW_LOZ DMEW_LOZ DHIW_LOZ DLOW_MEZ DMEW_MEZ DHIW_MEZ
 DLOW_HIZ DMEW_HIZ DHIW_HIZ
 TLOW_LOZ TMEW_LOZ THIW_LOZ TLOW_MEZ TMEW_MEZ THIW_MEZ
 TLOW_HIZ TMEW_HIZ THIW_HIZ);
 LOW_W = -1;
 MED_W = 0;
 HIGH_W = 1;
 LOW_Z = -1;
 MED_Z = 0;
 HIGH_Z = 1;

代码解读7

USEVARIABLES = X1 X2 X3 X4 M1 M2 M3 M4
W1 W2 W3 W4 Z1 Z2 Z3 Z4
Y1 Y2 Y3 Y4;
ANALYSIS:
 TYPE = GENERAL RANDOM;
 ESTIMATOR = ML;
 ALGORITHM = INTEGRATION;
MODEL:
! Measurement model
 X BY X1 X2 X3 X4;
 M BY M1 M2 M3 M4;
 W BY W1* W2 W3 W4;
 Z BY Z1* Z2 Z3 Z4;
 Y BY Y1 Y2 Y3 Y4;
  W@1;  Z@1;
! Create latent interactions
 MW | M XWITH W;
 MZ | M XWITH Z;
 XW | X XWITH W;
 XZ | X XWITH Z;
 WZ | W XWITH Z;
 MWZ | M XWITH WZ;
 XWZ | X XWITH WZ;
! Fit structural model and name parameters
 Y ON M (b1);
 Y ON MW (b2);
 Y ON MZ (b3);
 Y ON MWZ (b4);
 Y ON X(cdash1);
 Y ON W (cdash2);
 Y ON Z (cdash3);
 Y ON XW (cdash4);
 Y ON XZ (cdash5);
 Y ON WZ (cdash6);
 Y ON XWZ (cdash7);
 M ON X (a1);
 M ON W (a2);
 M ON Z (a3);
 M ON XW (a4);
 M ON XZ (a5);
 M ON WZ (a6);
 M ON XWZ (a7);
MODEL CONSTRAINT:
 NEW(LOW_W MED_W HIGH_W LOW_Z MED_Z HIGH_Z
 ILOW_LOZ IMEW_LOZ IHIW_LOZ ILOW_MEZ IMEW_MEZ IHIW_MEZ
 ILOW_HIZ IMEW_HIZ IHIW_HIZ
 DLOW_LOZ DMEW_LOZ DHIW_LOZ DLOW_MEZ DMEW_MEZ DHIW_MEZ
 DLOW_HIZ DMEW_HIZ DHIW_HIZ
 TLOW_LOZ TMEW_LOZ THIW_LOZ TLOW_MEZ TMEW_MEZ THIW_MEZ
 TLOW_HIZ TMEW_HIZ THIW_HIZ);
 LOW_W = -1;
 MED_W = 0;
 HIGH_W = 1;
 LOW_Z = -1;
 MED_Z = 0;
 HIGH_Z = 1;
! Calc conditional indirect effects for each combination of moderator values
 ILOW_LOZ = a1*b1 + a4*b1*LOW_W + a5*b1*LOW_Z + a7*b1*LOW_W*LOW_Z +
 a1*b2*LOW_W + a4*b2*LOW_W*LOW_W + a5*b2*LOW_Z*LOW_W +
 a7*b2*LOW_W*LOW_W*LOW_Z + a1*b3*LOW_Z + a4*b3*LOW_W*LOW_Z +
 a5*b3*LOW_Z*LOW_Z + a7*b3*LOW_W*LOW_Z*LOW_Z + a1*b4*LOW_W*LOW_Z +
 a4*b4*LOW_W*LOW_W*LOW_Z + a5*b4*LOW_W*LOW_Z*LOW_Z +
 a7*b4*LOW_W*LOW_W*LOW_Z*LOW_Z;
 IMEW_LOZ = ...
 IHIW_LOZ = ...
 ILOW_MEZ = ...
 IMEW_MEZ = ...
 IHIW_MEZ = ...
 ILOW_HIZ = ...
 IMEW_HIZ = ...
 IHIW_HIZ = ...

代码解读8

USEVARIABLES = X1 X2 X3 X4 M1 M2 M3 M4
W1 W2 W3 W4 Z1 Z2 Z3 Z4
Y1 Y2 Y3 Y4;
ANALYSIS:
 TYPE = GENERAL RANDOM;
 ESTIMATOR = ML;
 ALGORITHM = INTEGRATION;
MODEL:
! Measurement model
 X BY X1 X2 X3 X4;
 M BY M1 M2 M3 M4;
 W BY W1* W2 W3 W4;
 Z BY Z1* Z2 Z3 Z4;
 Y BY Y1 Y2 Y3 Y4;
  W@1;  Z@1;
! Create latent interactions
 MW | M XWITH W;
 MZ | M XWITH Z;
 XW | X XWITH W;
 XZ | X XWITH Z;
 WZ | W XWITH Z;
 MWZ | M XWITH WZ;
 XWZ | X XWITH WZ;
! Fit structural model and name parameters
 Y ON M (b1);
 Y ON MW (b2);
 Y ON MZ (b3);
 Y ON MWZ (b4);
 Y ON X(cdash1);
 Y ON W (cdash2);
 Y ON Z (cdash3);
 Y ON XW (cdash4);
 Y ON XZ (cdash5);
 Y ON WZ (cdash6);
 Y ON XWZ (cdash7);
 M ON X (a1);
 M ON W (a2);
 M ON Z (a3);
 M ON XW (a4);
 M ON XZ (a5);
 M ON WZ (a6);
 M ON XWZ (a7);
MODEL CONSTRAINT:
 NEW(LOW_W MED_W HIGH_W LOW_Z MED_Z HIGH_Z
 ILOW_LOZ IMEW_LOZ IHIW_LOZ ILOW_MEZ IMEW_MEZ IHIW_MEZ
 ILOW_HIZ IMEW_HIZ IHIW_HIZ
 DLOW_LOZ DMEW_LOZ DHIW_LOZ DLOW_MEZ DMEW_MEZ DHIW_MEZ
 DLOW_HIZ DMEW_HIZ DHIW_HIZ
 TLOW_LOZ TMEW_LOZ THIW_LOZ TLOW_MEZ TMEW_MEZ THIW_MEZ
 TLOW_HIZ TMEW_HIZ THIW_HIZ);
 LOW_W = -1;
 MED_W = 0;
 HIGH_W = 1;
 LOW_Z = -1;
 MED_Z = 0;
 HIGH_Z = 1;
! Calc conditional indirect effects for each combination of moderator values
 ILOW_LOZ = a1*b1 + a4*b1*LOW_W + a5*b1*LOW_Z + a7*b1*LOW_W*LOW_Z +
 a1*b2*LOW_W + a4*b2*LOW_W*LOW_W + a5*b2*LOW_Z*LOW_W +
 a7*b2*LOW_W*LOW_W*LOW_Z + a1*b3*LOW_Z + a4*b3*LOW_W*LOW_Z +
 a5*b3*LOW_Z*LOW_Z + a7*b3*LOW_W*LOW_Z*LOW_Z + a1*b4*LOW_W*LOW_Z +
 a4*b4*LOW_W*LOW_W*LOW_Z + a5*b4*LOW_W*LOW_Z*LOW_Z +
 a7*b4*LOW_W*LOW_W*LOW_Z*LOW_Z;
 IMEW_LOZ = ...
 IHIW_LOZ = ...
 ILOW_MEZ = ...
 IMEW_MEZ = ...
 IHIW_MEZ = ...
 ILOW_HIZ = ...
 IMEW_HIZ = ...
 IHIW_HIZ = ...
! Calc conditional direct effects for each combination of moderator values
 DLOW_LOZ = cdash1 + cdash4*LOW_W + cdash5*LOW_Z + cdash7*LOW_W*LOW_Z;
 DMEW_LOZ = ...
 DHIW_LOZ = ...
 DLOW_MEZ = ...
 DMEW_MEZ = ...
 DHIW_MEZ = ...
 DLOW_HIZ = ...
 DMEW_HIZ = ...
 DHIW_HIZ = ...

代码解读9

USEVARIABLES = X1 X2 X3 X4 M1 M2 M3 M4
W1 W2 W3 W4 Z1 Z2 Z3 Z4
Y1 Y2 Y3 Y4;
ANALYSIS:
 TYPE = GENERAL RANDOM;
 ESTIMATOR = ML;
 ALGORITHM = INTEGRATION;
MODEL:
! Measurement model
 X BY X1 X2 X3 X4;
 M BY M1 M2 M3 M4;
 W BY W1* W2 W3 W4;
 Z BY Z1* Z2 Z3 Z4;
 Y BY Y1 Y2 Y3 Y4;
  W@1;  Z@1;
! Create latent interactions
 MW | M XWITH W;
 MZ | M XWITH Z;
 XW | X XWITH W;
 XZ | X XWITH Z;
 WZ | W XWITH Z;
 MWZ | M XWITH WZ;
 XWZ | X XWITH WZ;
! Fit structural model and name parameters
 Y ON M (b1);
 Y ON MW (b2);
 Y ON MZ (b3);
 Y ON MWZ (b4);
 Y ON X(cdash1);
 Y ON W (cdash2);
 Y ON Z (cdash3);
 Y ON XW (cdash4);
 Y ON XZ (cdash5);
 Y ON WZ (cdash6);
 Y ON XWZ (cdash7);
 M ON X (a1);
 M ON W (a2);
 M ON Z (a3);
 M ON XW (a4);
 M ON XZ (a5);
 M ON WZ (a6);
 M ON XWZ (a7);
MODEL CONSTRAINT:
 NEW(LOW_W MED_W HIGH_W LOW_Z MED_Z HIGH_Z
 ILOW_LOZ IMEW_LOZ IHIW_LOZ ILOW_MEZ IMEW_MEZ IHIW_MEZ
 ILOW_HIZ IMEW_HIZ IHIW_HIZ
 DLOW_LOZ DMEW_LOZ DHIW_LOZ DLOW_MEZ DMEW_MEZ DHIW_MEZ
 DLOW_HIZ DMEW_HIZ DHIW_HIZ
 TLOW_LOZ TMEW_LOZ THIW_LOZ TLOW_MEZ TMEW_MEZ THIW_MEZ
 TLOW_HIZ TMEW_HIZ THIW_HIZ);
 LOW_W = -1;
 MED_W = 0;
 HIGH_W = 1;
 LOW_Z = -1;
 MED_Z = 0;
 HIGH_Z = 1;
! Calc conditional indirect effects for each combination of moderator values
 ILOW_LOZ = a1*b1 + a4*b1*LOW_W + a5*b1*LOW_Z + a7*b1*LOW_W*LOW_Z +
 a1*b2*LOW_W + a4*b2*LOW_W*LOW_W + a5*b2*LOW_Z*LOW_W +
 a7*b2*LOW_W*LOW_W*LOW_Z + a1*b3*LOW_Z + a4*b3*LOW_W*LOW_Z +
 a5*b3*LOW_Z*LOW_Z + a7*b3*LOW_W*LOW_Z*LOW_Z + a1*b4*LOW_W*LOW_Z +
 a4*b4*LOW_W*LOW_W*LOW_Z + a5*b4*LOW_W*LOW_Z*LOW_Z +
 a7*b4*LOW_W*LOW_W*LOW_Z*LOW_Z;
 IMEW_LOZ = ...
 IHIW_LOZ = ...
 ILOW_MEZ = ...
 IMEW_MEZ = ...
 IHIW_MEZ = ...
 ILOW_HIZ = ...
 IMEW_HIZ = ...
 IHIW_HIZ = ...
! Calc conditional direct effects for each combination of moderator values
 DLOW_LOZ = cdash1 + cdash4*LOW_W + cdash5*LOW_Z + cdash7*LOW_W*LOW_Z;
 DMEW_LOZ = ...
 DHIW_LOZ = ...
 DLOW_MEZ = ...
 DMEW_MEZ = ...
 DHIW_MEZ = ...
 DLOW_HIZ = ...
 DMEW_HIZ = ...
 DHIW_HIZ = ...
! Calc conditional total effects for each combination of moderator values
 TLOW_LOZ = ILOW_LOZ + DLOW_LOZ;
 TMEW_LOZ = IMEW_LOZ + DMEW_LOZ;
 THIW_LOZ = IHIW_LOZ + DHIW_LOZ;
 TLOW_MEZ = ILOW_MEZ + DLOW_MEZ;
 TMEW_MEZ = IMEW_MEZ + DMEW_MEZ;
 THIW_MEZ = IHIW_MEZ + DHIW_MEZ;
 TLOW_HIZ = ILOW_HIZ + DLOW_HIZ;
 TMEW_HIZ = IMEW_HIZ + DMEW_HIZ;
 THIW_HIZ = IHIW_HIZ + DHIW_HIZ;

代码解读10

USEVARIABLES = X1 X2 X3 X4 M1 M2 M3 M4
W1 W2 W3 W4 Z1 Z2 Z3 Z4
Y1 Y2 Y3 Y4;
ANALYSIS:
 TYPE = GENERAL RANDOM;
 ESTIMATOR = ML;
 ALGORITHM = INTEGRATION;
MODEL:
! Measurement model
 X BY X1 X2 X3 X4;
 M BY M1 M2 M3 M4;
 W BY W1* W2 W3 W4;
 Z BY Z1* Z2 Z3 Z4;
 Y BY Y1 Y2 Y3 Y4;
  W@1;  Z@1;
! Create latent interactions
 MW | M XWITH W;
 MZ | M XWITH Z;
 XW | X XWITH W;
 XZ | X XWITH Z;
 WZ | W XWITH Z;
 MWZ | M XWITH WZ;
 XWZ | X XWITH WZ;
! Fit structural model and name parameters
 Y ON M (b1);
 Y ON MW (b2);
 Y ON MZ (b3);
 Y ON MWZ (b4);
 Y ON X(cdash1);
 Y ON W (cdash2);
 Y ON Z (cdash3);
 Y ON XW (cdash4);
 Y ON XZ (cdash5);
 Y ON WZ (cdash6);
 Y ON XWZ (cdash7);
 M ON X (a1);
 M ON W (a2);
 M ON Z (a3);
 M ON XW (a4);
 M ON XZ (a5);
 M ON WZ (a6);
 M ON XWZ (a7);
MODEL CONSTRAINT:
 NEW(LOW_W MED_W HIGH_W LOW_Z MED_Z HIGH_Z
 ILOW_LOZ IMEW_LOZ IHIW_LOZ ILOW_MEZ IMEW_MEZ IHIW_MEZ
 ILOW_HIZ IMEW_HIZ IHIW_HIZ
 DLOW_LOZ DMEW_LOZ DHIW_LOZ DLOW_MEZ DMEW_MEZ DHIW_MEZ
 DLOW_HIZ DMEW_HIZ DHIW_HIZ
 TLOW_LOZ TMEW_LOZ THIW_LOZ TLOW_MEZ TMEW_MEZ THIW_MEZ
 TLOW_HIZ TMEW_HIZ THIW_HIZ);
 LOW_W = -1;
 MED_W = 0;
 HIGH_W = 1;
 LOW_Z = -1;
 MED_Z = 0;
 HIGH_Z = 1;
! Calc conditional indirect effects for each combination of moderator values
 ILOW_LOZ = a1*b1 + a4*b1*LOW_W + a5*b1*LOW_Z + a7*b1*LOW_W*LOW_Z +
 a1*b2*LOW_W + a4*b2*LOW_W*LOW_W + a5*b2*LOW_Z*LOW_W +
 a7*b2*LOW_W*LOW_W*LOW_Z + a1*b3*LOW_Z + a4*b3*LOW_W*LOW_Z +
 a5*b3*LOW_Z*LOW_Z + a7*b3*LOW_W*LOW_Z*LOW_Z + a1*b4*LOW_W*LOW_Z +
 a4*b4*LOW_W*LOW_W*LOW_Z + a5*b4*LOW_W*LOW_Z*LOW_Z +
 a7*b4*LOW_W*LOW_W*LOW_Z*LOW_Z;
 IMEW_LOZ = ...
 IHIW_LOZ = ...
 ILOW_MEZ = ...
 IMEW_MEZ = ...
 IHIW_MEZ = ...
 ILOW_HIZ = ...
 IMEW_HIZ = ...
 IHIW_HIZ = ...
! Calc conditional direct effects for each combination of moderator values
 DLOW_LOZ = cdash1 + cdash4*LOW_W + cdash5*LOW_Z + cdash7*LOW_W*LOW_Z;
 DMEW_LOZ = ...
 DHIW_LOZ = ...
 DLOW_MEZ = ...
 DMEW_MEZ = ...
 DHIW_MEZ = ...
 DLOW_HIZ = ...
 DMEW_HIZ = ...
 DHIW_HIZ = ...
! Calc conditional total effects for each combination of moderator values
 TLOW_LOZ = ILOW_LOZ + DLOW_LOZ;
 TMEW_LOZ = IMEW_LOZ + DMEW_LOZ;
 THIW_LOZ = IHIW_LOZ + DHIW_LOZ;
 TLOW_MEZ = ILOW_MEZ + DLOW_MEZ;
 TMEW_MEZ = IMEW_MEZ + DMEW_MEZ;
 THIW_MEZ = IHIW_MEZ + DHIW_MEZ;
 TLOW_HIZ = ILOW_HIZ + DLOW_HIZ;
 TMEW_HIZ = IMEW_HIZ + DMEW_HIZ;
 THIW_HIZ = IHIW_HIZ + DHIW_HIZ;
! Use loop plot to plot conditional indirect effect of X on Y for each combination of low, med, high moderator values
 PLOT(PLOW_LOZ PMEW_LOZ PHIW_LOZ PLOW_MEZ PMEW_MEZ PHIW_MEZ
 PLOW_HIZ PMEW_HIZ PHIW_HIZ);
 LOOP(XVAL,-3,3,0.1);
 PLOW_LOZ = ILOW_LOZ*XVAL;
 PMEW_LOZ = IMEW_LOZ*XVAL;
 PHIW_LOZ = IHIW_LOZ*XVAL;
 PLOW_MEZ = ILOW_MEZ*XVAL;
 PMEW_MEZ = IMEW_MEZ*XVAL;
 PHIW_MEZ = IHIW_MEZ*XVAL;
 PLOW_HIZ = ILOW_HIZ*XVAL;
 PMEW_HIZ = IMEW_HIZ*XVAL;
 PHIW_HIZ = IHIW_HIZ*XVAL;

代码解读11

USEVARIABLES = X1 X2 X3 X4 M1 M2 M3 M4
W1 W2 W3 W4 Z1 Z2 Z3 Z4
Y1 Y2 Y3 Y4;
ANALYSIS:
 TYPE = GENERAL RANDOM;
 ESTIMATOR = ML;
 ALGORITHM = INTEGRATION;
MODEL:
! Measurement model
 X BY X1 X2 X3 X4;
 M BY M1 M2 M3 M4;
 W BY W1* W2 W3 W4;
 Z BY Z1* Z2 Z3 Z4;
 Y BY Y1 Y2 Y3 Y4;
  W@1;  Z@1;
! Create latent interactions
 MW | M XWITH W;
 MZ | M XWITH Z;
 XW | X XWITH W;
 XZ | X XWITH Z;
 WZ | W XWITH Z;
 MWZ | M XWITH WZ;
 XWZ | X XWITH WZ;
! Fit structural model and name parameters
 Y ON M (b1);
 Y ON MW (b2);
 Y ON MZ (b3);
 Y ON MWZ (b4);
 Y ON X(cdash1);
 Y ON W (cdash2);
 Y ON Z (cdash3);
 Y ON XW (cdash4);
 Y ON XZ (cdash5);
 Y ON WZ (cdash6);
 Y ON XWZ (cdash7);
 M ON X (a1);
 M ON W (a2);
 M ON Z (a3);
 M ON XW (a4);
 M ON XZ (a5);
 M ON WZ (a6);
 M ON XWZ (a7);
MODEL CONSTRAINT:
 NEW(LOW_W MED_W HIGH_W LOW_Z MED_Z HIGH_Z
 ILOW_LOZ IMEW_LOZ IHIW_LOZ ILOW_MEZ IMEW_MEZ IHIW_MEZ
 ILOW_HIZ IMEW_HIZ IHIW_HIZ
 DLOW_LOZ DMEW_LOZ DHIW_LOZ DLOW_MEZ DMEW_MEZ DHIW_MEZ
 DLOW_HIZ DMEW_HIZ DHIW_HIZ
 TLOW_LOZ TMEW_LOZ THIW_LOZ TLOW_MEZ TMEW_MEZ THIW_MEZ
 TLOW_HIZ TMEW_HIZ THIW_HIZ);
 LOW_W = -1;
 MED_W = 0;
 HIGH_W = 1;
 LOW_Z = -1;
 MED_Z = 0;
 HIGH_Z = 1;
! Calc conditional indirect effects for each combination of moderator values
 ILOW_LOZ = a1*b1 + a4*b1*LOW_W + a5*b1*LOW_Z + a7*b1*LOW_W*LOW_Z +
 a1*b2*LOW_W + a4*b2*LOW_W*LOW_W + a5*b2*LOW_Z*LOW_W +
 a7*b2*LOW_W*LOW_W*LOW_Z + a1*b3*LOW_Z + a4*b3*LOW_W*LOW_Z +
 a5*b3*LOW_Z*LOW_Z + a7*b3*LOW_W*LOW_Z*LOW_Z + a1*b4*LOW_W*LOW_Z +
 a4*b4*LOW_W*LOW_W*LOW_Z + a5*b4*LOW_W*LOW_Z*LOW_Z +
 a7*b4*LOW_W*LOW_W*LOW_Z*LOW_Z;
 IMEW_LOZ = ...
 IHIW_LOZ = ...
 ILOW_MEZ = ...
 IMEW_MEZ = ...
 IHIW_MEZ = ...
 ILOW_HIZ = ...
 IMEW_HIZ = ...
 IHIW_HIZ = ...
! Calc conditional direct effects for each combination of moderator values
 DLOW_LOZ = cdash1 + cdash4*LOW_W + cdash5*LOW_Z + cdash7*LOW_W*LOW_Z;
 DMEW_LOZ = ...
 DHIW_LOZ = ...
 DLOW_MEZ = ...
 DMEW_MEZ = ...
 DHIW_MEZ = ...
 DLOW_HIZ = ...
 DMEW_HIZ = ...
 DHIW_HIZ = ...
! Calc conditional total effects for each combination of moderator values
 TLOW_LOZ = ILOW_LOZ + DLOW_LOZ;
 TMEW_LOZ = IMEW_LOZ + DMEW_LOZ;
 THIW_LOZ = IHIW_LOZ + DHIW_LOZ;
 TLOW_MEZ = ILOW_MEZ + DLOW_MEZ;
 TMEW_MEZ = IMEW_MEZ + DMEW_MEZ;
 THIW_MEZ = IHIW_MEZ + DHIW_MEZ;
 TLOW_HIZ = ILOW_HIZ + DLOW_HIZ;
 TMEW_HIZ = IMEW_HIZ + DMEW_HIZ;
 THIW_HIZ = IHIW_HIZ + DHIW_HIZ;
! Use loop plot to plot conditional indirect effect of X on Y for each combination of low, med, high moderator values
 PLOT(PLOW_LOZ PMEW_LOZ PHIW_LOZ PLOW_MEZ PMEW_MEZ PHIW_MEZ
 PLOW_HIZ PMEW_HIZ PHIW_HIZ);
 LOOP(XVAL,-3,3,0.1);
 PLOW_LOZ = ILOW_LOZ*XVAL;
 PMEW_LOZ = IMEW_LOZ*XVAL;
 PHIW_LOZ = IHIW_LOZ*XVAL;
 PLOW_MEZ = ILOW_MEZ*XVAL;
 PMEW_MEZ = IMEW_MEZ*XVAL;
 PHIW_MEZ = IHIW_MEZ*XVAL;
 PLOW_HIZ = ILOW_HIZ*XVAL;
 PMEW_HIZ = IMEW_HIZ*XVAL;
 PHIW_HIZ = IHIW_HIZ*XVAL;
PLOT:
 TYPE = plot2;
OUTPUT:
 CINT;

资源汇总

  • 本视频讲义地址: https://mlln.cn/mplus-model-templates/model73latent.html
  • 图书《MPlus中介调节模型》打包下载: 点击下载
  • 图书《MPlus中介调节模型》在线看: 点击查看
  • 视频教程: 点击这里打开视频
  • Mplus 模型模板教程列表: https://mlln.cn/mplus-model-templates
  • 统计咨询: https://wx.zsxq.com/group/88888188828842