Mplus model72latent 模型讲解

来自图书《MPlus中介调节模型》

PPT标题:Mplus调节中介模型(潜变量)速查教程

  • 理论模型
  • 数学模型
  • 数学推导
  • 代码解读

理论模型

数学模型

数学公式1

模型方程:

Y = b0 + b1M + b2W + b3Z + b4MW + b5MZ + b6WZ + b7MWZ + c'X

M = a0 + a1X + a2W + a3Z + a4XW + a5XZ + a6WZ + a7XWZ

数学公式2

模型方程:

Y = b0 + b1M + b2W + b3Z + b4MW + b5MZ + b6WZ + b7MWZ + c'X

M = a0 + a1X + a2W + a3Z + a4XW + a5XZ + a6WZ + a7XWZ
代入和展开:

Y = b0 + b1(a0 + a1X + a2W + a3Z + a4XW + a5XZ + a6WZ + a7XWZ) + b2W + b3Z + b4(a0 + a1X + a2W + a3Z + a4XW + a5XZ + a6WZ + a7XWZ)W + b5(a0 + a1X + a2W + a3Z + a4XW + a5XZ + a6WZ + a7XWZ)Z + b6WZ + b7(a0 + a1X + a2W + a3Z + a4XW + a5XZ + a6WZ + a7XWZ)WZ + c'X


Y = b0 + a0b1 + a1b1X + a2b1W + a3b1Z + a4b1XW + a5b1XZ + a6b1WZ + a7b1XWZ + b2W + b3Z + a0b4W + a1b4XW + a2b4WW + a3b4ZW + a4b4XWW + a5b4XZW + a6b4WWZ + a7b4XWWZ + a0b5Z + a1b5XZ + a2b5WZ + a3b5ZZ + a4b5XWZ + a5b5XZZ + a6b5WZZ + a7b5XWZZ + b6WZ + a0b7WZ + a1b7XWZ + a2b7WWZ + a3b7WZZ + a4b7XWWZ + a5b7XWZZ + a6b7WWZZ + a7XWWZZ + c'X

数学公式3

模型方程:

Y = b0 + b1M + b2W + b3Z + b4MW + b5MZ + b6WZ + b7MWZ + c'X

M = a0 + a1X + a2W + a3Z + a4XW + a5XZ + a6WZ + a7XWZ
代入和展开:

Y = b0 + b1(a0 + a1X + a2W + a3Z + a4XW + a5XZ + a6WZ + a7XWZ) + b2W + b3Z + b4(a0 + a1X + a2W + a3Z + a4XW + a5XZ + a6WZ + a7XWZ)W + b5(a0 + a1X + a2W + a3Z + a4XW + a5XZ + a6WZ + a7XWZ)Z + b6WZ + b7(a0 + a1X + a2W + a3Z + a4XW + a5XZ + a6WZ + a7XWZ)WZ + c'X


Y = b0 + a0b1 + a1b1X + a2b1W + a3b1Z + a4b1XW + a5b1XZ + a6b1WZ + a7b1XWZ + b2W + b3Z + a0b4W + a1b4XW + a2b4WW + a3b4ZW + a4b4XWW + a5b4XZW + a6b4WWZ + a7b4XWWZ + a0b5Z + a1b5XZ + a2b5WZ + a3b5ZZ + a4b5XWZ + a5b5XZZ + a6b5WZZ + a7b5XWZZ + b6WZ + a0b7WZ + a1b7XWZ + a2b7WWZ + a3b7WZZ + a4b7XWWZ + a5b7XWZZ + a6b7WWZZ + a7XWWZZ + c'X
整理和分组:

Y = (b0 + a0b1 + a2b1W + a3b1Z + a6b1WZ + b2W + b3Z + a0b4W + a2b4WW + a3b4ZW + a6b4WWZ + a0b5Z + a2b5WZ + a3b5ZZ + a6b5WZZ + b6WZ + a0b7WZ + a2b7WWZ + a3b7WZZ + a6b7WWZZ) + (a1b1 + a4b1W + a5b1Z + a7b1WZ + a1b4W + a4b4WW + a5b4ZW + a7b4WWZ + a1b5Z + a4b5WZ + a5b5ZZ + a7b5WZZ + a1b7WZ + a4b7WWZ + a5b7WZZ + a7b7WWZZ + c')X

数学公式4

模型方程:

Y = b0 + b1M + b2W + b3Z + b4MW + b5MZ + b6WZ + b7MWZ + c'X

M = a0 + a1X + a2W + a3Z + a4XW + a5XZ + a6WZ + a7XWZ
代入和展开:

Y = b0 + b1(a0 + a1X + a2W + a3Z + a4XW + a5XZ + a6WZ + a7XWZ) + b2W + b3Z + b4(a0 + a1X + a2W + a3Z + a4XW + a5XZ + a6WZ + a7XWZ)W + b5(a0 + a1X + a2W + a3Z + a4XW + a5XZ + a6WZ + a7XWZ)Z + b6WZ + b7(a0 + a1X + a2W + a3Z + a4XW + a5XZ + a6WZ + a7XWZ)WZ + c'X


Y = b0 + a0b1 + a1b1X + a2b1W + a3b1Z + a4b1XW + a5b1XZ + a6b1WZ + a7b1XWZ + b2W + b3Z + a0b4W + a1b4XW + a2b4WW + a3b4ZW + a4b4XWW + a5b4XZW + a6b4WWZ + a7b4XWWZ + a0b5Z + a1b5XZ + a2b5WZ + a3b5ZZ + a4b5XWZ + a5b5XZZ + a6b5WZZ + a7b5XWZZ + b6WZ + a0b7WZ + a1b7XWZ + a2b7WWZ + a3b7WZZ + a4b7XWWZ + a5b7XWZZ + a6b7WWZZ + a7XWWZZ + c'X
整理和分组:

Y = (b0 + a0b1 + a2b1W + a3b1Z + a6b1WZ + b2W + b3Z + a0b4W + a2b4WW + a3b4ZW + a6b4WWZ + a0b5Z + a2b5WZ + a3b5ZZ + a6b5WZZ + b6WZ + a0b7WZ + a2b7WWZ + a3b7WZZ + a6b7WWZZ) + (a1b1 + a4b1W + a5b1Z + a7b1WZ + a1b4W + a4b4WW + a5b4ZW + a7b4WWZ + a1b5Z + a4b5WZ + a5b5ZZ + a7b5WZZ + a1b7WZ + a4b7WWZ + a5b7WZZ + a7b7WWZZ + c')X
间接效应和直接效应:

间接效应 (通过M):

(a1 + a4W + a5Z + a7WZ)(b1 + b4W + b5Z + b7WZ)

直接效应 (不通过M):

c'

代码解读1

USEVARIABLES = X1 X2 X3 X4 M1 M2 M3 M4
W1 W2 W3 W4 Z1 Z2 Z3 Z4
Y1 Y2 Y3 Y4;

代码解读2

USEVARIABLES = X1 X2 X3 X4 M1 M2 M3 M4
W1 W2 W3 W4 Z1 Z2 Z3 Z4
Y1 Y2 Y3 Y4;
ANALYSIS:

 TYPE = GENERAL RANDOM;
 ESTIMATOR = ML;
 ALGORITHM = INTEGRATION;

代码解读3

USEVARIABLES = X1 X2 X3 X4 M1 M2 M3 M4
W1 W2 W3 W4 Z1 Z2 Z3 Z4
Y1 Y2 Y3 Y4;
ANALYSIS:

 TYPE = GENERAL RANDOM;
 ESTIMATOR = ML;
 ALGORITHM = INTEGRATION;
MODEL:
! Measurement model


! Identify moderator factors by fixing variance = 1 (instead of first loading)


! This makes these factors standardised

 X BY X1 X2 X3 X4;
 M BY M1 M2 M3 M4;
 W BY W1* W2 W3 W4;
 Z BY Z1* Z2 Z3 Z4;
 Y BY Y1 Y2 Y3 Y4;
  W@1;  Z@1;

代码解读4

USEVARIABLES = X1 X2 X3 X4 M1 M2 M3 M4
W1 W2 W3 W4 Z1 Z2 Z3 Z4
Y1 Y2 Y3 Y4;
ANALYSIS:

 TYPE = GENERAL RANDOM;
 ESTIMATOR = ML;
 ALGORITHM = INTEGRATION;
MODEL:
! Measurement model


! Identify moderator factors by fixing variance = 1 (instead of first loading)


! This makes these factors standardised

 X BY X1 X2 X3 X4;
 M BY M1 M2 M3 M4;
 W BY W1* W2 W3 W4;
 Z BY Z1* Z2 Z3 Z4;
 Y BY Y1 Y2 Y3 Y4;
  W@1;  Z@1;
! Create latent interactions

 MW | M XWITH W;
 MZ | M XWITH Z;
 XW | X XWITH W;
 XZ | X XWITH Z;
 WZ | W XWITH Z;
 MWZ | M XWITH WZ;
 XWZ | X XWITH WZ;

代码解读5

USEVARIABLES = X1 X2 X3 X4 M1 M2 M3 M4
W1 W2 W3 W4 Z1 Z2 Z3 Z4
Y1 Y2 Y3 Y4;
ANALYSIS:

 TYPE = GENERAL RANDOM;
 ESTIMATOR = ML;
 ALGORITHM = INTEGRATION;
MODEL:
! Measurement model


! Identify moderator factors by fixing variance = 1 (instead of first loading)


! This makes these factors standardised

 X BY X1 X2 X3 X4;
 M BY M1 M2 M3 M4;
 W BY W1* W2 W3 W4;
 Z BY Z1* Z2 Z3 Z4;
 Y BY Y1 Y2 Y3 Y4;
  W@1;  Z@1;
! Create latent interactions

 MW | M XWITH W;
 MZ | M XWITH Z;
 XW | X XWITH W;
 XZ | X XWITH Z;
 WZ | W XWITH Z;
 MWZ | M XWITH WZ;
 XWZ | X XWITH WZ;
! Fit structural model and name parameters


! Note that intercepts of M, Y are fixed = 0 since they are latent vars


! so no code to state and name them as parameters

 Y ON M (b1);
 Y ON W (b2);
 Y ON Z (b3);
 Y ON MW (b4);
 Y ON MZ (b5);
 Y ON WZ (b6);
 Y ON MWZ (b7);
 Y ON X(cdash);
 M ON X (a1);
 M ON W (a2);
 M ON Z (a3);
 M ON XW (a4);
 M ON XZ (a5);
 M ON WZ (a6);
 M ON XWZ (a7);

代码解读6

USEVARIABLES = X1 X2 X3 X4 M1 M2 M3 M4
W1 W2 W3 W4 Z1 Z2 Z3 Z4
Y1 Y2 Y3 Y4;
ANALYSIS:

 TYPE = GENERAL RANDOM;
 ESTIMATOR = ML;
 ALGORITHM = INTEGRATION;
MODEL:
! Measurement model


! Identify moderator factors by fixing variance = 1 (instead of first loading)


! This makes these factors standardised

 X BY X1 X2 X3 X4;
 M BY M1 M2 M3 M4;
 W BY W1* W2 W3 W4;
 Z BY Z1* Z2 Z3 Z4;
 Y BY Y1 Y2 Y3 Y4;
  W@1;  Z@1;
! Create latent interactions

 MW | M XWITH W;
 MZ | M XWITH Z;
 XW | X XWITH W;
 XZ | X XWITH Z;
 WZ | W XWITH Z;
 MWZ | M XWITH WZ;
 XWZ | X XWITH WZ;
! Fit structural model and name parameters


! Note that intercepts of M, Y are fixed = 0 since they are latent vars


! so no code to state and name them as parameters

 Y ON M (b1);
 Y ON W (b2);
 Y ON Z (b3);
 Y ON MW (b4);
 Y ON MZ (b5);
 Y ON WZ (b6);
 Y ON MWZ (b7);
 Y ON X(cdash);
 M ON X (a1);
 M ON W (a2);
 M ON Z (a3);
 M ON XW (a4);
 M ON XZ (a5);
 M ON WZ (a6);
 M ON XWZ (a7);
! Use model constraint subcommand to test conditional indirect effects


! You need to pick low, medium and high moderator values for W, Z


! for example, of 1 SD below mean, mean, 1 SD above mean
! 2 moderators, 3 values for each, gives 9 combinations


! arbitrary naming convention for conditional indirect and total effects used below:


! MEV_LOQ = medium value of V and low value of Q, etc.
MODEL CONSTRAINT:
 NEW(LOW_W MED_W HIGH_W LOW_Z MED_Z HIGH_Z
 ILOW_LOZ IMEW_LOZ IHIW_LOZ ILOW_MEZ IMEW_MEZ IHIW_MEZ
 ILOW_HIZ IMEW_HIZ IHIW_HIZ
 TLOW_LOZ TMEW_LOZ THIW_LOZ TLOW_MEZ TMEW_MEZ THIW_MEZ
 TLOW_HIZ TMEW_HIZ THIW_HIZ);
 LOW_W = -1;
! -1 SD below mean value of W

 MED_W = 0;
! mean value of W

 HIGH_W = 1;
! +1 SD above mean value of W
 LOW_Z = -1;
! -1 SD below mean value of Z

 MED_Z = 0;
! mean value of Z

 HIGH_Z = 1;
! +1 SD above mean value of Z

代码解读7

USEVARIABLES = X1 X2 X3 X4 M1 M2 M3 M4
W1 W2 W3 W4 Z1 Z2 Z3 Z4
Y1 Y2 Y3 Y4;
ANALYSIS:

 TYPE = GENERAL RANDOM;
 ESTIMATOR = ML;
 ALGORITHM = INTEGRATION;
MODEL:
! Measurement model


! Identify moderator factors by fixing variance = 1 (instead of first loading)


! This makes these factors standardised

 X BY X1 X2 X3 X4;
 M BY M1 M2 M3 M4;
 W BY W1* W2 W3 W4;
 Z BY Z1* Z2 Z3 Z4;
 Y BY Y1 Y2 Y3 Y4;
  W@1;  Z@1;
! Create latent interactions

 MW | M XWITH W;
 MZ | M XWITH Z;
 XW | X XWITH W;
 XZ | X XWITH Z;
 WZ | W XWITH Z;
 MWZ | M XWITH WZ;
 XWZ | X XWITH WZ;
! Fit structural model and name parameters


! Note that intercepts of M, Y are fixed = 0 since they are latent vars


! so no code to state and name them as parameters

 Y ON M (b1);
 Y ON W (b2);
 Y ON Z (b3);
 Y ON MW (b4);
 Y ON MZ (b5);
 Y ON WZ (b6);
 Y ON MWZ (b7);
 Y ON X(cdash);
 M ON X (a1);
 M ON W (a2);
 M ON Z (a3);
 M ON XW (a4);
 M ON XZ (a5);
 M ON WZ (a6);
 M ON XWZ (a7);
! Use model constraint subcommand to test conditional indirect effects


! You need to pick low, medium and high moderator values for W, Z


! for example, of 1 SD below mean, mean, 1 SD above mean
! 2 moderators, 3 values for each, gives 9 combinations


! arbitrary naming convention for conditional indirect and total effects used below:


! MEV_LOQ = medium value of V and low value of Q, etc.
MODEL CONSTRAINT:
 NEW(LOW_W MED_W HIGH_W LOW_Z MED_Z HIGH_Z
 ILOW_LOZ IMEW_LOZ IHIW_LOZ ILOW_MEZ IMEW_MEZ IHIW_MEZ
 ILOW_HIZ IMEW_HIZ IHIW_HIZ
 TLOW_LOZ TMEW_LOZ THIW_LOZ TLOW_MEZ TMEW_MEZ THIW_MEZ
 TLOW_HIZ TMEW_HIZ THIW_HIZ);
 LOW_W = -1;
! -1 SD below mean value of W

 MED_W = 0;
! mean value of W

 HIGH_W = 1;
! +1 SD above mean value of W
 LOW_Z = -1;
! -1 SD below mean value of Z

 MED_Z = 0;
! mean value of Z

 HIGH_Z = 1;
! +1 SD above mean value of Z
! Calc conditional indirect effects for each combination of moderator values
 ILOW_LOZ = a1*b1 + a4*b1*LOW_W + a5*b1*LOW_Z + a7*b1*LOW_W*LOW_Z +
 a1*b4*LOW_W + a4*b4*LOW_W*LOW_W + a5*b4*LOW_Z*LOW_W +
 a7*b4*LOW_W*LOW_W*LOW_Z + a1*b5*LOW_Z + a4*b5*LOW_W*LOW_Z +
 a5*b5*LOW_Z*LOW_Z + a7*b5*LOW_W*LOW_Z*LOW_Z + a1*b7*LOW_W*LOW_Z +
 a4*b7*LOW_W*LOW_W*LOW_Z + a5*b7*LOW_W*LOW_Z*LOW_Z +
 a7*b7*LOW_W*LOW_W*LOW_Z*LOW_Z;
 IMEW_LOZ = a1*b1 + a4*b1*MED_W + a5*b1*LOW_Z + a7*b1*MED_W*LOW_Z +
 a1*b4*MED_W + a4*b4*MED_W*MED_W + a5*b4*LOW_Z*MED_W +
 a7*b4*MED_W*MED_W*LOW_Z + a1*b5*LOW_Z + a4*b5*MED_W*LOW_Z +
 a5*b5*LOW_Z*LOW_Z + a7*b5*MED_W*LOW_Z*LOW_Z + a1*b7*MED_W*LOW_Z +
 a4*b7*MED_W*MED_W*LOW_Z + a5*b7*MED_W*LOW_Z*LOW_Z +
 a7*b7*MED_W*MED_W*LOW_Z*LOW_Z;
 IHIW_LOZ = a1*b1 + a4*b1*HIGH_W + a5*b1*LOW_Z + a7*b1*HIGH_W*LOW_Z +
 a1*b4*HIGH_W + a4*b4*HIGH_W*HIGH_W + a5*b4*LOW_Z*HIGH_W +
 a7*b4*HIGH_W*HIGH_W*LOW_Z + a1*b5*LOW_Z + a4*b5*HIGH_W*LOW_Z +
 a5*b5*LOW_Z*LOW_Z + a7*b5*HIGH_W*LOW_Z*LOW_Z + a1*b7*HIGH_W*LOW_Z +
 a4*b7*HIGH_W*HIGH_W*LOW_Z + a5*b7*HIGH_W*LOW_Z*LOW_Z +
 a7*b7*HIGH_W*HIGH_W*LOW_Z*LOW_Z;
 ILOW_MEZ = a1*b1 + a4*b1*LOW_W + a5*b1*MED_Z + a7*b1*LOW_W*MED_Z +
 a1*b4*LOW_W + a4*b4*LOW_W*LOW_W + a5*b4*MED_Z*LOW_W +
 a7*b4*LOW_W*LOW_W*MED_Z + a1*b5*MED_Z + a4*b5*LOW_W*MED_Z +
 a5*b5*MED_Z*MED_Z + a7*b5*LOW_W*MED_Z*MED_Z + a1*b7*LOW_W*MED_Z +
 a4*b7*LOW_W*LOW_W*MED_Z + a5*b7*LOW_W*MED_Z*MED_Z +
 a7*b7*LOW_W*LOW_W*MED_Z*MED_Z;
 IMEW_MEZ = a1*b1 + a4*b1*MED_W + a5*b1*MED_Z + a7*b1*MED_W*MED_Z +
 a1*b4*MED_W + a4*b4*MED_W*MED_W + a5*b4*MED_Z*MED_W +
 a7*b4*MED_W*MED_W*MED_Z + a1*b5*MED_Z + a4*b5*MED_W*MED_Z +
 a5*b5*MED_Z*MED_Z + a7*b5*MED_W*MED_Z*MED_Z + a1*b7*MED_W*MED_Z +
 a4*b7*MED_W*MED_W*MED_Z + a5*b7*MED_W*MED_Z*MED_Z +
 a7*b7*MED_W*MED_W*MED_Z*MED_Z;
 IHIW_MEZ = a1*b1 + a4*b1*HIGH_W + a5*b1*MED_Z + a7*b1*HIGH_W*MED_Z +
 a1*b4*HIGH_W + a4*b4*HIGH_W*HIGH_W + a5*b4*MED_Z*HIGH_W +
 a7*b4*HIGH_W*HIGH_W*MED_Z + a1*b5*MED_Z + a4*b5*HIGH_W*MED_Z +
 a5*b5*MED_Z*MED_Z + a7*b5*HIGH_W*MED_Z*MED_Z + a1*b7*HIGH_W*MED_Z +
 a4*b7*HIGH_W*HIGH_W*MED_Z + a5*b7*HIGH_W*MED_Z*MED_Z +
 a7*b7*HIGH_W*HIGH_W*MED_Z*MED_Z;
 ILOW_HIZ = a1*b1 + a4*b1*LOW_W + a5*b1*HIGH_Z + a7*b1*LOW_W*HIGH_Z +
 a1*b4*LOW_W + a4*b4*LOW_W*LOW_W + a5*b4*HIGH_Z*LOW_W +
 a7*b4*LOW_W*LOW_W*HIGH_Z + a1*b5*HIGH_Z + a4*b5*LOW_W*HIGH_Z +
 a5*b5*HIGH_Z*HIGH_Z + a7*b5*LOW_W*HIGH_Z*HIGH_Z + a1*b7*LOW_W*HIGH_Z +
 a4*b7*LOW_W*LOW_W*HIGH_Z + a5*b7*LOW_W*HIGH_Z*HIGH_Z +
 a7*b7*LOW_W*LOW_W*HIGH_Z*HIGH_Z;
 IMEW_HIZ = a1*b1 + a4*b1*MED_W + a5*b1*HIGH_Z + a7*b1*MED_W*HIGH_Z +
 a1*b4*MED_W + a4*b4*MED_W*MED_W + a5*b4*HIGH_Z*MED_W +
 a7*b4*MED_W*MED_W*HIGH_Z + a1*b5*HIGH_Z + a4*b5*MED_W*HIGH_Z +
 a5*b5*HIGH_Z*HIGH_Z + a7*b5*MED_W*HIGH_Z*HIGH_Z + a1*b7*MED_W*HIGH_Z +
 a4*b7*MED_W*MED_W*HIGH_Z + a5*b7*MED_W*HIGH_Z*HIGH_Z +
 a7*b7*MED_W*MED_W*HIGH_Z*HIGH_Z;
 IHIW_HIZ = a1*b1 + a4*b1*HIGH_W + a5*b1*HIGH_Z + a7*b1*HIGH_W*HIGH_Z +
 a1*b4*HIGH_W + a4*b4*HIGH_W*HIGH_W + a5*b4*HIGH_Z*HIGH_W +
 a7*b4*HIGH_W*HIGH_W*HIGH_Z + a1*b5*HIGH_Z + a4*b5*HIGH_W*HIGH_Z +
 a5*b5*HIGH_Z*HIGH_Z + a7*b5*HIGH_W*HIGH_Z*HIGH_Z + a1*b7*HIGH_W*HIGH_Z +
 a4*b7*HIGH_W*HIGH_W*HIGH_Z + a5*b7*HIGH_W*HIGH_Z*HIGH_Z +
 a7*b7*HIGH_W*HIGH_W*HIGH_Z*HIGH_Z;

代码解读8

USEVARIABLES = X1 X2 X3 X4 M1 M2 M3 M4
W1 W2 W3 W4 Z1 Z2 Z3 Z4
Y1 Y2 Y3 Y4;
ANALYSIS:

 TYPE = GENERAL RANDOM;
 ESTIMATOR = ML;
 ALGORITHM = INTEGRATION;
MODEL:
! Measurement model


! Identify moderator factors by fixing variance = 1 (instead of first loading)


! This makes these factors standardised

 X BY X1 X2 X3 X4;
 M BY M1 M2 M3 M4;
 W BY W1* W2 W3 W4;
 Z BY Z1* Z2 Z3 Z4;
 Y BY Y1 Y2 Y3 Y4;
  W@1;  Z@1;
! Create latent interactions

 MW | M XWITH W;
 MZ | M XWITH Z;
 XW | X XWITH W;
 XZ | X XWITH Z;
 WZ | W XWITH Z;
 MWZ | M XWITH WZ;
 XWZ | X XWITH WZ;
! Fit structural model and name parameters


! Note that intercepts of M, Y are fixed = 0 since they are latent vars


! so no code to state and name them as parameters

 Y ON M (b1);
 Y ON W (b2);
 Y ON Z (b3);
 Y ON MW (b4);
 Y ON MZ (b5);
 Y ON WZ (b6);
 Y ON MWZ (b7);
 Y ON X(cdash);
 M ON X (a1);
 M ON W (a2);
 M ON Z (a3);
 M ON XW (a4);
 M ON XZ (a5);
 M ON WZ (a6);
 M ON XWZ (a7);
! Use model constraint subcommand to test conditional indirect effects


! You need to pick low, medium and high moderator values for W, Z


! for example, of 1 SD below mean, mean, 1 SD above mean
! 2 moderators, 3 values for each, gives 9 combinations


! arbitrary naming convention for conditional indirect and total effects used below:


! MEV_LOQ = medium value of V and low value of Q, etc.
MODEL CONSTRAINT:
 NEW(LOW_W MED_W HIGH_W LOW_Z MED_Z HIGH_Z
 ILOW_LOZ IMEW_LOZ IHIW_LOZ ILOW_MEZ IMEW_MEZ IHIW_MEZ
 ILOW_HIZ IMEW_HIZ IHIW_HIZ
 TLOW_LOZ TMEW_LOZ THIW_LOZ TLOW_MEZ TMEW_MEZ THIW_MEZ
 TLOW_HIZ TMEW_HIZ THIW_HIZ);
 LOW_W = -1;
! -1 SD below mean value of W

 MED_W = 0;
! mean value of W

 HIGH_W = 1;
! +1 SD above mean value of W
 LOW_Z = -1;
! -1 SD below mean value of Z

 MED_Z = 0;
! mean value of Z

 HIGH_Z = 1;
! +1 SD above mean value of Z
! Calc conditional indirect effects for each combination of moderator values
 ILOW_LOZ = a1*b1 + a4*b1*LOW_W + a5*b1*LOW_Z + a7*b1*LOW_W*LOW_Z +
 a1*b4*LOW_W + a4*b4*LOW_W*LOW_W + a5*b4*LOW_Z*LOW_W +
 a7*b4*LOW_W*LOW_W*LOW_Z + a1*b5*LOW_Z + a4*b5*LOW_W*LOW_Z +
 a5*b5*LOW_Z*LOW_Z + a7*b5*LOW_W*LOW_Z*LOW_Z + a1*b7*LOW_W*LOW_Z +
 a4*b7*LOW_W*LOW_W*LOW_Z + a5*b7*LOW_W*LOW_Z*LOW_Z +
 a7*b7*LOW_W*LOW_W*LOW_Z*LOW_Z;
 IMEW_LOZ = a1*b1 + a4*b1*MED_W + a5*b1*LOW_Z + a7*b1*MED_W*LOW_Z +
 a1*b4*MED_W + a4*b4*MED_W*MED_W + a5*b4*LOW_Z*MED_W +
 a7*b4*MED_W*MED_W*LOW_Z + a1*b5*LOW_Z + a4*b5*MED_W*LOW_Z +
 a5*b5*LOW_Z*LOW_Z + a7*b5*MED_W*LOW_Z*LOW_Z + a1*b7*MED_W*LOW_Z +
 a4*b7*MED_W*MED_W*LOW_Z + a5*b7*MED_W*LOW_Z*LOW_Z +
 a7*b7*MED_W*MED_W*LOW_Z*LOW_Z;
 IHIW_LOZ = a1*b1 + a4*b1*HIGH_W + a5*b1*LOW_Z + a7*b1*HIGH_W*LOW_Z +
 a1*b4*HIGH_W + a4*b4*HIGH_W*HIGH_W + a5*b4*LOW_Z*HIGH_W +
 a7*b4*HIGH_W*HIGH_W*LOW_Z + a1*b5*LOW_Z + a4*b5*HIGH_W*LOW_Z +
 a5*b5*LOW_Z*LOW_Z + a7*b5*HIGH_W*LOW_Z*LOW_Z + a1*b7*HIGH_W*LOW_Z +
 a4*b7*HIGH_W*HIGH_W*LOW_Z + a5*b7*HIGH_W*LOW_Z*LOW_Z +
 a7*b7*HIGH_W*HIGH_W*LOW_Z*LOW_Z;
 ILOW_MEZ = a1*b1 + a4*b1*LOW_W + a5*b1*MED_Z + a7*b1*LOW_W*MED_Z +
 a1*b4*LOW_W + a4*b4*LOW_W*LOW_W + a5*b4*MED_Z*LOW_W +
 a7*b4*LOW_W*LOW_W*MED_Z + a1*b5*MED_Z + a4*b5*LOW_W*MED_Z +
 a5*b5*MED_Z*MED_Z + a7*b5*LOW_W*MED_Z*MED_Z + a1*b7*LOW_W*MED_Z +
 a4*b7*LOW_W*LOW_W*MED_Z + a5*b7*LOW_W*MED_Z*MED_Z +
 a7*b7*LOW_W*LOW_W*MED_Z*MED_Z;
 IMEW_MEZ = a1*b1 + a4*b1*MED_W + a5*b1*MED_Z + a7*b1*MED_W*MED_Z +
 a1*b4*MED_W + a4*b4*MED_W*MED_W + a5*b4*MED_Z*MED_W +
 a7*b4*MED_W*MED_W*MED_Z + a1*b5*MED_Z + a4*b5*MED_W*MED_Z +
 a5*b5*MED_Z*MED_Z + a7*b5*MED_W*MED_Z*MED_Z + a1*b7*MED_W*MED_Z +
 a4*b7*MED_W*MED_W*MED_Z + a5*b7*MED_W*MED_Z*MED_Z +
 a7*b7*MED_W*MED_W*MED_Z*MED_Z;
 IHIW_MEZ = a1*b1 + a4*b1*HIGH_W + a5*b1*MED_Z + a7*b1*HIGH_W*MED_Z +
 a1*b4*HIGH_W + a4*b4*HIGH_W*HIGH_W + a5*b4*MED_Z*HIGH_W +
 a7*b4*HIGH_W*HIGH_W*MED_Z + a1*b5*MED_Z + a4*b5*HIGH_W*MED_Z +
 a5*b5*MED_Z*MED_Z + a7*b5*HIGH_W*MED_Z*MED_Z + a1*b7*HIGH_W*MED_Z +
 a4*b7*HIGH_W*HIGH_W*MED_Z + a5*b7*HIGH_W*MED_Z*MED_Z +
 a7*b7*HIGH_W*HIGH_W*MED_Z*MED_Z;
 ILOW_HIZ = a1*b1 + a4*b1*LOW_W + a5*b1*HIGH_Z + a7*b1*LOW_W*HIGH_Z +
 a1*b4*LOW_W + a4*b4*LOW_W*LOW_W + a5*b4*HIGH_Z*LOW_W +
 a7*b4*LOW_W*LOW_W*HIGH_Z + a1*b5*HIGH_Z + a4*b5*LOW_W*HIGH_Z +
 a5*b5*HIGH_Z*HIGH_Z + a7*b5*LOW_W*HIGH_Z*HIGH_Z + a1*b7*LOW_W*HIGH_Z +
 a4*b7*LOW_W*LOW_W*HIGH_Z + a5*b7*LOW_W*HIGH_Z*HIGH_Z +
 a7*b7*LOW_W*LOW_W*HIGH_Z*HIGH_Z;
 IMEW_HIZ = a1*b1 + a4*b1*MED_W + a5*b1*HIGH_Z + a7*b1*MED_W*HIGH_Z +
 a1*b4*MED_W + a4*b4*MED_W*MED_W + a5*b4*HIGH_Z*MED_W +
 a7*b4*MED_W*MED_W*HIGH_Z + a1*b5*HIGH_Z + a4*b5*MED_W*HIGH_Z +
 a5*b5*HIGH_Z*HIGH_Z + a7*b5*MED_W*HIGH_Z*HIGH_Z + a1*b7*MED_W*HIGH_Z +
 a4*b7*MED_W*MED_W*HIGH_Z + a5*b7*MED_W*HIGH_Z*HIGH_Z +
 a7*b7*MED_W*MED_W*HIGH_Z*HIGH_Z;
 IHIW_HIZ = a1*b1 + a4*b1*HIGH_W + a5*b1*HIGH_Z + a7*b1*HIGH_W*HIGH_Z +
 a1*b4*HIGH_W + a4*b4*HIGH_W*HIGH_W + a5*b4*HIGH_Z*HIGH_W +
 a7*b4*HIGH_W*HIGH_W*HIGH_Z + a1*b5*HIGH_Z + a4*b5*HIGH_W*HIGH_Z +
 a5*b5*HIGH_Z*HIGH_Z + a7*b5*HIGH_W*HIGH_Z*HIGH_Z + a1*b7*HIGH_W*HIGH_Z +
 a4*b7*HIGH_W*HIGH_W*HIGH_Z + a5*b7*HIGH_W*HIGH_Z*HIGH_Z +
 a7*b7*HIGH_W*HIGH_W*HIGH_Z*HIGH_Z;
! Calc conditional total effects for each combination of moderator values
 TLOW_LOZ = ILOW_LOZ + cdash;
 TMEW_LOZ = IMEW_LOZ + cdash;
 THIW_LOZ = IHIW_LOZ + cdash;
 TLOW_MEZ = ILOW_MEZ + cdash;
 TMEW_MEZ = IMEW_MEZ + cdash;
 THIW_MEZ = IHIW_MEZ + cdash;
 TLOW_HIZ = ILOW_HIZ + cdash;
 TMEW_HIZ = IMEW_HIZ + cdash;
 THIW_HIZ = IHIW_HIZ + cdash;

代码解读9

USEVARIABLES = X1 X2 X3 X4 M1 M2 M3 M4
W1 W2 W3 W4 Z1 Z2 Z3 Z4
Y1 Y2 Y3 Y4;
ANALYSIS:

 TYPE = GENERAL RANDOM;
 ESTIMATOR = ML;
 ALGORITHM = INTEGRATION;
MODEL:
! Measurement model


! Identify moderator factors by fixing variance = 1 (instead of first loading)


! This makes these factors standardised

 X BY X1 X2 X3 X4;
 M BY M1 M2 M3 M4;
 W BY W1* W2 W3 W4;
 Z BY Z1* Z2 Z3 Z4;
 Y BY Y1 Y2 Y3 Y4;
  W@1;  Z@1;
! Create latent interactions

 MW | M XWITH W;
 MZ | M XWITH Z;
 XW | X XWITH W;
 XZ | X XWITH Z;
 WZ | W XWITH Z;
 MWZ | M XWITH WZ;
 XWZ | X XWITH WZ;
! Fit structural model and name parameters


! Note that intercepts of M, Y are fixed = 0 since they are latent vars


! so no code to state and name them as parameters

 Y ON M (b1);
 Y ON W (b2);
 Y ON Z (b3);
 Y ON MW (b4);
 Y ON MZ (b5);
 Y ON WZ (b6);
 Y ON MWZ (b7);
 Y ON X(cdash);
 M ON X (a1);
 M ON W (a2);
 M ON Z (a3);
 M ON XW (a4);
 M ON XZ (a5);
 M ON WZ (a6);
 M ON XWZ (a7);
! Use model constraint subcommand to test conditional indirect effects


! You need to pick low, medium and high moderator values for W, Z


! for example, of 1 SD below mean, mean, 1 SD above mean
! 2 moderators, 3 values for each, gives 9 combinations


! arbitrary naming convention for conditional indirect and total effects used below:


! MEV_LOQ = medium value of V and low value of Q, etc.
MODEL CONSTRAINT:
 NEW(LOW_W MED_W HIGH_W LOW_Z MED_Z HIGH_Z
 ILOW_LOZ IMEW_LOZ IHIW_LOZ ILOW_MEZ IMEW_MEZ IHIW_MEZ
 ILOW_HIZ IMEW_HIZ IHIW_HIZ
 TLOW_LOZ TMEW_LOZ THIW_LOZ TLOW_MEZ TMEW_MEZ THIW_MEZ
 TLOW_HIZ TMEW_HIZ THIW_HIZ);
 LOW_W = -1;
! -1 SD below mean value of W

 MED_W = 0;
! mean value of W

 HIGH_W = 1;
! +1 SD above mean value of W
 LOW_Z = -1;
! -1 SD below mean value of Z

 MED_Z = 0;
! mean value of Z

 HIGH_Z = 1;
! +1 SD above mean value of Z
! Calc conditional indirect effects for each combination of moderator values
 ILOW_LOZ = a1*b1 + a4*b1*LOW_W + a5*b1*LOW_Z + a7*b1*LOW_W*LOW_Z +
 a1*b4*LOW_W + a4*b4*LOW_W*LOW_W + a5*b4*LOW_Z*LOW_W +
 a7*b4*LOW_W*LOW_W*LOW_Z + a1*b5*LOW_Z + a4*b5*LOW_W*LOW_Z +
 a5*b5*LOW_Z*LOW_Z + a7*b5*LOW_W*LOW_Z*LOW_Z + a1*b7*LOW_W*LOW_Z +
 a4*b7*LOW_W*LOW_W*LOW_Z + a5*b7*LOW_W*LOW_Z*LOW_Z +
 a7*b7*LOW_W*LOW_W*LOW_Z*LOW_Z;
 IMEW_LOZ = a1*b1 + a4*b1*MED_W + a5*b1*LOW_Z + a7*b1*MED_W*LOW_Z +
 a1*b4*MED_W + a4*b4*MED_W*MED_W + a5*b4*LOW_Z*MED_W +
 a7*b4*MED_W*MED_W*LOW_Z + a1*b5*LOW_Z + a4*b5*MED_W*LOW_Z +
 a5*b5*LOW_Z*LOW_Z + a7*b5*MED_W*LOW_Z*LOW_Z + a1*b7*MED_W*LOW_Z +
 a4*b7*MED_W*MED_W*LOW_Z + a5*b7*MED_W*LOW_Z*LOW_Z +
 a7*b7*MED_W*MED_W*LOW_Z*LOW_Z;
 IHIW_LOZ = a1*b1 + a4*b1*HIGH_W + a5*b1*LOW_Z + a7*b1*HIGH_W*LOW_Z +
 a1*b4*HIGH_W + a4*b4*HIGH_W*HIGH_W + a5*b4*LOW_Z*HIGH_W +
 a7*b4*HIGH_W*HIGH_W*LOW_Z + a1*b5*LOW_Z + a4*b5*HIGH_W*LOW_Z +
 a5*b5*LOW_Z*LOW_Z + a7*b5*HIGH_W*LOW_Z*LOW_Z + a1*b7*HIGH_W*LOW_Z +
 a4*b7*HIGH_W*HIGH_W*LOW_Z + a5*b7*HIGH_W*LOW_Z*LOW_Z +
 a7*b7*HIGH_W*HIGH_W*LOW_Z*LOW_Z;
 ILOW_MEZ = a1*b1 + a4*b1*LOW_W + a5*b1*MED_Z + a7*b1*LOW_W*MED_Z +
 a1*b4*LOW_W + a4*b4*LOW_W*LOW_W + a5*b4*MED_Z*LOW_W +
 a7*b4*LOW_W*LOW_W*MED_Z + a1*b5*MED_Z + a4*b5*LOW_W*MED_Z +
 a5*b5*MED_Z*MED_Z + a7*b5*LOW_W*MED_Z*MED_Z + a1*b7*LOW_W*MED_Z +
 a4*b7*LOW_W*LOW_W*MED_Z + a5*b7*LOW_W*MED_Z*MED_Z +
 a7*b7*LOW_W*LOW_W*MED_Z*MED_Z;
 IMEW_MEZ = a1*b1 + a4*b1*MED_W + a5*b1*MED_Z + a7*b1*MED_W*MED_Z +
 a1*b4*MED_W + a4*b4*MED_W*MED_W + a5*b4*MED_Z*MED_W +
 a7*b4*MED_W*MED_W*MED_Z + a1*b5*MED_Z + a4*b5*MED_W*MED_Z +
 a5*b5*MED_Z*MED_Z + a7*b5*MED_W*MED_Z*MED_Z + a1*b7*MED_W*MED_Z +
 a4*b7*MED_W*MED_W*MED_Z + a5*b7*MED_W*MED_Z*MED_Z +
 a7*b7*MED_W*MED_W*MED_Z*MED_Z;
 IHIW_MEZ = a1*b1 + a4*b1*HIGH_W + a5*b1*MED_Z + a7*b1*HIGH_W*MED_Z +
 a1*b4*HIGH_W + a4*b4*HIGH_W*HIGH_W + a5*b4*MED_Z*HIGH_W +
 a7*b4*HIGH_W*HIGH_W*MED_Z + a1*b5*MED_Z + a4*b5*HIGH_W*MED_Z +
 a5*b5*MED_Z*MED_Z + a7*b5*HIGH_W*MED_Z*MED_Z + a1*b7*HIGH_W*MED_Z +
 a4*b7*HIGH_W*HIGH_W*MED_Z + a5*b7*HIGH_W*MED_Z*MED_Z +
 a7*b7*HIGH_W*HIGH_W*MED_Z*MED_Z;
 ILOW_HIZ = a1*b1 + a4*b1*LOW_W + a5*b1*HIGH_Z + a7*b1*LOW_W*HIGH_Z +
 a1*b4*LOW_W + a4*b4*LOW_W*LOW_W + a5*b4*HIGH_Z*LOW_W +
 a7*b4*LOW_W*LOW_W*HIGH_Z + a1*b5*HIGH_Z + a4*b5*LOW_W*HIGH_Z +
 a5*b5*HIGH_Z*HIGH_Z + a7*b5*LOW_W*HIGH_Z*HIGH_Z + a1*b7*LOW_W*HIGH_Z +
 a4*b7*LOW_W*LOW_W*HIGH_Z + a5*b7*LOW_W*HIGH_Z*HIGH_Z +
 a7*b7*LOW_W*LOW_W*HIGH_Z*HIGH_Z;
 IMEW_HIZ = a1*b1 + a4*b1*MED_W + a5*b1*HIGH_Z + a7*b1*MED_W*HIGH_Z +
 a1*b4*MED_W + a4*b4*MED_W*MED_W + a5*b4*HIGH_Z*MED_W +
 a7*b4*MED_W*MED_W*HIGH_Z + a1*b5*HIGH_Z + a4*b5*MED_W*HIGH_Z +
 a5*b5*HIGH_Z*HIGH_Z + a7*b5*MED_W*HIGH_Z*HIGH_Z + a1*b7*MED_W*HIGH_Z +
 a4*b7*MED_W*MED_W*HIGH_Z + a5*b7*MED_W*HIGH_Z*HIGH_Z +
 a7*b7*MED_W*MED_W*HIGH_Z*HIGH_Z;
 IHIW_HIZ = a1*b1 + a4*b1*HIGH_W + a5*b1*HIGH_Z + a7*b1*HIGH_W*HIGH_Z +
 a1*b4*HIGH_W + a4*b4*HIGH_W*HIGH_W + a5*b4*HIGH_Z*HIGH_W +
 a7*b4*HIGH_W*HIGH_W*HIGH_Z + a1*b5*HIGH_Z + a4*b5*HIGH_W*HIGH_Z +
 a5*b5*HIGH_Z*HIGH_Z + a7*b5*HIGH_W*HIGH_Z*HIGH_Z + a1*b7*HIGH_W*HIGH_Z +
 a4*b7*HIGH_W*HIGH_W*HIGH_Z + a5*b7*HIGH_W*HIGH_Z*HIGH_Z +
 a7*b7*HIGH_W*HIGH_W*HIGH_Z*HIGH_Z;
! Calc conditional total effects for each combination of moderator values
 TLOW_LOZ = ILOW_LOZ + cdash;
 TMEW_LOZ = IMEW_LOZ + cdash;
 THIW_LOZ = IHIW_LOZ + cdash;
 TLOW_MEZ = ILOW_MEZ + cdash;
 TMEW_MEZ = IMEW_MEZ + cdash;
 THIW_MEZ = IHIW_MEZ + cdash;
 TLOW_HIZ = ILOW_HIZ + cdash;
 TMEW_HIZ = IMEW_HIZ + cdash;
 THIW_HIZ = IHIW_HIZ + cdash;
! Use loop plot to plot conditional indirect effect of X on Y for each combination of low, med, high moderator values
! Could be edited to show conditional direct or conditional total effects instead
! NOTE - values from -3 to 3 in LOOP() statement since
! X is factor with mean set at default of 0
 PLOT(PLOW_LOZ PMEW_LOZ PHIW_LOZ PLOW_MEZ PMEW_MEZ PHIW_MEZ
 PLOW_HIZ PMEW_HIZ PHIW_HIZ);
 LOOP(XVAL,-3,3,0.1);
 PLOW_LOZ = ILOW_LOZ*XVAL;
 PMEW_LOZ = IMEW_LOZ*XVAL;
 PHIW_LOZ = IHIW_LOZ*XVAL;
 PLOW_MEZ = ILOW_MEZ*XVAL;
 PMEW_MEZ = IMEW_MEZ*XVAL;
 PHIW_MEZ = IHIW_MEZ*XVAL;
 PLOW_HIZ = ILOW_HIZ*XVAL;
 PMEW_HIZ = IMEW_HIZ*XVAL;
 PHIW_HIZ = IHIW_HIZ*XVAL;

代码解读10

USEVARIABLES = X1 X2 X3 X4 M1 M2 M3 M4
W1 W2 W3 W4 Z1 Z2 Z3 Z4
Y1 Y2 Y3 Y4;
ANALYSIS:

 TYPE = GENERAL RANDOM;
 ESTIMATOR = ML;
 ALGORITHM = INTEGRATION;
MODEL:
! Measurement model


! Identify moderator factors by fixing variance = 1 (instead of first loading)


! This makes these factors standardised

 X BY X1 X2 X3 X4;
 M BY M1 M2 M3 M4;
 W BY W1* W2 W3 W4;
 Z BY Z1* Z2 Z3 Z4;
 Y BY Y1 Y2 Y3 Y4;
  W@1;  Z@1;
! Create latent interactions

 MW | M XWITH W;
 MZ | M XWITH Z;
 XW | X XWITH W;
 XZ | X XWITH Z;
 WZ | W XWITH Z;
 MWZ | M XWITH WZ;
 XWZ | X XWITH WZ;
! Fit structural model and name parameters


! Note that intercepts of M, Y are fixed = 0 since they are latent vars


! so no code to state and name them as parameters

 Y ON M (b1);
 Y ON W (b2);
 Y ON Z (b3);
 Y ON MW (b4);
 Y ON MZ (b5);
 Y ON WZ (b6);
 Y ON MWZ (b7);
 Y ON X(cdash);
 M ON X (a1);
 M ON W (a2);
 M ON Z (a3);
 M ON XW (a4);
 M ON XZ (a5);
 M ON WZ (a6);
 M ON XWZ (a7);
! Use model constraint subcommand to test conditional indirect effects


! You need to pick low, medium and high moderator values for W, Z


! for example, of 1 SD below mean, mean, 1 SD above mean
! 2 moderators, 3 values for each, gives 9 combinations


! arbitrary naming convention for conditional indirect and total effects used below:


! MEV_LOQ = medium value of V and low value of Q, etc.
MODEL CONSTRAINT:
 NEW(LOW_W MED_W HIGH_W LOW_Z MED_Z HIGH_Z
 ILOW_LOZ IMEW_LOZ IHIW_LOZ ILOW_MEZ IMEW_MEZ IHIW_MEZ
 ILOW_HIZ IMEW_HIZ IHIW_HIZ
 TLOW_LOZ TMEW_LOZ THIW_LOZ TLOW_MEZ TMEW_MEZ THIW_MEZ
 TLOW_HIZ TMEW_HIZ THIW_HIZ);
 LOW_W = -1;
! -1 SD below mean value of W

 MED_W = 0;
! mean value of W

 HIGH_W = 1;
! +1 SD above mean value of W
 LOW_Z = -1;
! -1 SD below mean value of Z

 MED_Z = 0;
! mean value of Z

 HIGH_Z = 1;
! +1 SD above mean value of Z
! Calc conditional indirect effects for each combination of moderator values
 ILOW_LOZ = a1*b1 + a4*b1*LOW_W + a5*b1*LOW_Z + a7*b1*LOW_W*LOW_Z +
 a1*b4*LOW_W + a4*b4*LOW_W*LOW_W + a5*b4*LOW_Z*LOW_W +
 a7*b4*LOW_W*LOW_W*LOW_Z + a1*b5*LOW_Z + a4*b5*LOW_W*LOW_Z +
 a5*b5*LOW_Z*LOW_Z + a7*b5*LOW_W*LOW_Z*LOW_Z + a1*b7*LOW_W*LOW_Z +
 a4*b7*LOW_W*LOW_W*LOW_Z + a5*b7*LOW_W*LOW_Z*LOW_Z +
 a7*b7*LOW_W*LOW_W*LOW_Z*LOW_Z;
 IMEW_LOZ = a1*b1 + a4*b1*MED_W + a5*b1*LOW_Z + a7*b1*MED_W*LOW_Z +
 a1*b4*MED_W + a4*b4*MED_W*MED_W + a5*b4*LOW_Z*MED_W +
 a7*b4*MED_W*MED_W*LOW_Z + a1*b5*LOW_Z + a4*b5*MED_W*LOW_Z +
 a5*b5*LOW_Z*LOW_Z + a7*b5*MED_W*LOW_Z*LOW_Z + a1*b7*MED_W*LOW_Z +
 a4*b7*MED_W*MED_W*LOW_Z + a5*b7*MED_W*LOW_Z*LOW_Z +
 a7*b7*MED_W*MED_W*LOW_Z*LOW_Z;
 IHIW_LOZ = a1*b1 + a4*b1*HIGH_W + a5*b1*LOW_Z + a7*b1*HIGH_W*LOW_Z +
 a1*b4*HIGH_W + a4*b4*HIGH_W*HIGH_W + a5*b4*LOW_Z*HIGH_W +
 a7*b4*HIGH_W*HIGH_W*LOW_Z + a1*b5*LOW_Z + a4*b5*HIGH_W*LOW_Z +
 a5*b5*LOW_Z*LOW_Z + a7*b5*HIGH_W*LOW_Z*LOW_Z + a1*b7*HIGH_W*LOW_Z +
 a4*b7*HIGH_W*HIGH_W*LOW_Z + a5*b7*HIGH_W*LOW_Z*LOW_Z +
 a7*b7*HIGH_W*HIGH_W*LOW_Z*LOW_Z;
 ILOW_MEZ = a1*b1 + a4*b1*LOW_W + a5*b1*MED_Z + a7*b1*LOW_W*MED_Z +
 a1*b4*LOW_W + a4*b4*LOW_W*LOW_W + a5*b4*MED_Z*LOW_W +
 a7*b4*LOW_W*LOW_W*MED_Z + a1*b5*MED_Z + a4*b5*LOW_W*MED_Z +
 a5*b5*MED_Z*MED_Z + a7*b5*LOW_W*MED_Z*MED_Z + a1*b7*LOW_W*MED_Z +
 a4*b7*LOW_W*LOW_W*MED_Z + a5*b7*LOW_W*MED_Z*MED_Z +
 a7*b7*LOW_W*LOW_W*MED_Z*MED_Z;
 IMEW_MEZ = a1*b1 + a4*b1*MED_W + a5*b1*MED_Z + a7*b1*MED_W*MED_Z +
 a1*b4*MED_W + a4*b4*MED_W*MED_W + a5*b4*MED_Z*MED_W +
 a7*b4*MED_W*MED_W*MED_Z + a1*b5*MED_Z + a4*b5*MED_W*MED_Z +
 a5*b5*MED_Z*MED_Z + a7*b5*MED_W*MED_Z*MED_Z + a1*b7*MED_W*MED_Z +
 a4*b7*MED_W*MED_W*MED_Z + a5*b7*MED_W*MED_Z*MED_Z +
 a7*b7*MED_W*MED_W*MED_Z*MED_Z;
 IHIW_MEZ = a1*b1 + a4*b1*HIGH_W + a5*b1*MED_Z + a7*b1*HIGH_W*MED_Z +
 a1*b4*HIGH_W + a4*b4*HIGH_W*HIGH_W + a5*b4*MED_Z*HIGH_W +
 a7*b4*HIGH_W*HIGH_W*MED_Z + a1*b5*MED_Z + a4*b5*HIGH_W*MED_Z +
 a5*b5*MED_Z*MED_Z + a7*b5*HIGH_W*MED_Z*MED_Z + a1*b7*HIGH_W*MED_Z +
 a4*b7*HIGH_W*HIGH_W*MED_Z + a5*b7*HIGH_W*MED_Z*MED_Z +
 a7*b7*HIGH_W*HIGH_W*MED_Z*MED_Z;
 ILOW_HIZ = a1*b1 + a4*b1*LOW_W + a5*b1*HIGH_Z + a7*b1*LOW_W*HIGH_Z +
 a1*b4*LOW_W + a4*b4*LOW_W*LOW_W + a5*b4*HIGH_Z*LOW_W +
 a7*b4*LOW_W*LOW_W*HIGH_Z + a1*b5*HIGH_Z + a4*b5*LOW_W*HIGH_Z +
 a5*b5*HIGH_Z*HIGH_Z + a7*b5*LOW_W*HIGH_Z*HIGH_Z + a1*b7*LOW_W*HIGH_Z +
 a4*b7*LOW_W*LOW_W*HIGH_Z + a5*b7*LOW_W*HIGH_Z*HIGH_Z +
 a7*b7*LOW_W*LOW_W*HIGH_Z*HIGH_Z;
 IMEW_HIZ = a1*b1 + a4*b1*MED_W + a5*b1*HIGH_Z + a7*b1*MED_W*HIGH_Z +
 a1*b4*MED_W + a4*b4*MED_W*MED_W + a5*b4*HIGH_Z*MED_W +
 a7*b4*MED_W*MED_W*HIGH_Z + a1*b5*HIGH_Z + a4*b5*MED_W*HIGH_Z +
 a5*b5*HIGH_Z*HIGH_Z + a7*b5*MED_W*HIGH_Z*HIGH_Z + a1*b7*MED_W*HIGH_Z +
 a4*b7*MED_W*MED_W*HIGH_Z + a5*b7*MED_W*HIGH_Z*HIGH_Z +
 a7*b7*MED_W*MED_W*HIGH_Z*HIGH_Z;
 IHIW_HIZ = a1*b1 + a4*b1*HIGH_W + a5*b1*HIGH_Z + a7*b1*HIGH_W*HIGH_Z +
 a1*b4*HIGH_W + a4*b4*HIGH_W*HIGH_W + a5*b4*HIGH_Z*HIGH_W +
 a7*b4*HIGH_W*HIGH_W*HIGH_Z + a1*b5*HIGH_Z + a4*b5*HIGH_W*HIGH_Z +
 a5*b5*HIGH_Z*HIGH_Z + a7*b5*HIGH_W*HIGH_Z*HIGH_Z + a1*b7*HIGH_W*HIGH_Z +
 a4*b7*HIGH_W*HIGH_W*HIGH_Z + a5*b7*HIGH_W*HIGH_Z*HIGH_Z +
 a7*b7*HIGH_W*HIGH_W*HIGH_Z*HIGH_Z;
! Calc conditional total effects for each combination of moderator values
 TLOW_LOZ = ILOW_LOZ + cdash;
 TMEW_LOZ = IMEW_LOZ + cdash;
 THIW_LOZ = IHIW_LOZ + cdash;
 TLOW_MEZ = ILOW_MEZ + cdash;
 TMEW_MEZ = IMEW_MEZ + cdash;
 THIW_MEZ = IHIW_MEZ + cdash;
 TLOW_HIZ = ILOW_HIZ + cdash;
 TMEW_HIZ = IMEW_HIZ + cdash;
 THIW_HIZ = IHIW_HIZ + cdash;
! Use loop plot to plot conditional indirect effect of X on Y for each combination of low, med, high moderator values
! Could be edited to show conditional direct or conditional total effects instead
! NOTE - values from -3 to 3 in LOOP() statement since
! X is factor with mean set at default of 0
 PLOT(PLOW_LOZ PMEW_LOZ PHIW_LOZ PLOW_MEZ PMEW_MEZ PHIW_MEZ
 PLOW_HIZ PMEW_HIZ PHIW_HIZ);
 LOOP(XVAL,-3,3,0.1);
 PLOW_LOZ = ILOW_LOZ*XVAL;
 PMEW_LOZ = IMEW_LOZ*XVAL;
 PHIW_LOZ = IHIW_LOZ*XVAL;
 PLOW_MEZ = ILOW_MEZ*XVAL;
 PMEW_MEZ = IMEW_MEZ*XVAL;
 PHIW_MEZ = IHIW_MEZ*XVAL;
 PLOW_HIZ = ILOW_HIZ*XVAL;
 PMEW_HIZ = IMEW_HIZ*XVAL;
 PHIW_HIZ = IHIW_HIZ*XVAL;
PLOT:

 TYPE = plot2;
OUTPUT:

 CINT;

资源汇总

  • 本视频讲义地址: https://mlln.cn/mplus-model-templates/model72latent.html
  • 图书《MPlus中介调节模型》打包下载: 点击下载
  • 图书《MPlus中介调节模型》在线看: 点击查看
  • 视频教程: 点击这里打开视频
  • Mplus 模型模板教程列表: https://mlln.cn/mplus-model-templates
  • 统计咨询: https://wx.zsxq.com/group/88888188828842