Mplus model70latent 模型讲解

来自图书《MPlus中介调节模型》

Mplus模型70:潜变量中介、调节与调节中介效应模型

  • 理论模型
  • 数学模型
  • 模型公式 (可替换为更精准的描述,例如:数学推导 或 参数估计)
  • Mplus代码解读

理论模型

数学模型

数学公式1

Y = b0 + b1M + b2W + b3V + b4MW + b5MV + b6WV + b7MWV + c'X

数学公式2

Y = b0 + b1M + b2W + b3V + b4MW + b5MV + b6WV + b7MWV + c'X
M = a0 + a1X + a2W + a3XW

数学公式3

Y = b0 + b1M + b2W + b3V + b4MW + b5MV + b6WV + b7MWV + c'X
M = a0 + a1X + a2W + a3XW
Y = b0 + b1(a0 + a1X + a2W + a3XW) + b2W + b3V + b4(a0 + a1X + a2W + a3XW)W + b5(a0 + a1X + a2W + a3XW)V + b6WV + b7(a0 + a1X + a2W + a3XW)WV + c'X

数学公式4

Y = b0 + b1M + b2W + b3V + b4MW + b5MV + b6WV + b7MWV + c'X
M = a0 + a1X + a2W + a3XW
Y = b0 + b1(a0 + a1X + a2W + a3XW) + b2W + b3V + b4(a0 + a1X + a2W + a3XW)W + b5(a0 + a1X + a2W + a3XW)V + b6WV + b7(a0 + a1X + a2W + a3XW)WV + c'X
Y = b0 + a0b1 + a1b1X + a2b1W + a3b1XW + b2W + b3V + a0b4W + a1b4XW + a2b4WW + a3b4XWW + a0b5V + a1b5XV + a2b5WV + a3b5XWV + b6WV + a0b7WV + a1b7XWV + a2b7WWV + a3b7XWWV + c'X

数学公式5

Y = b0 + b1M + b2W + b3V + b4MW + b5MV + b6WV + b7MWV + c'X
M = a0 + a1X + a2W + a3XW
Y = b0 + b1(a0 + a1X + a2W + a3XW) + b2W + b3V + b4(a0 + a1X + a2W + a3XW)W + b5(a0 + a1X + a2W + a3XW)V + b6WV + b7(a0 + a1X + a2W + a3XW)WV + c'X
Y = b0 + a0b1 + a1b1X + a2b1W + a3b1XW + b2W + b3V + a0b4W + a1b4XW + a2b4WW + a3b4XWW + a0b5V + a1b5XV + a2b5WV + a3b5XWV + b6WV + a0b7WV + a1b7XWV + a2b7WWV + a3b7XWWV + c'X
Y = (b0 + a0b1 + a2b1W + b2W + b3V + a0b4W + a2b4WW + a0b5V + a2b5WV + b6WV + a0b7WV + a2b7WWV) + (a1b1 + a3b1W + a1b4W + a3b4WW + a1b5V + a3b5WV + a1b7WV + a3b7WWV + c')X

数学公式6

Y = b0 + b1M + b2W + b3V + b4MW + b5MV + b6WV + b7MWV + c'X
M = a0 + a1X + a2W + a3XW
Y = b0 + b1(a0 + a1X + a2W + a3XW) + b2W + b3V + b4(a0 + a1X + a2W + a3XW)W + b5(a0 + a1X + a2W + a3XW)V + b6WV + b7(a0 + a1X + a2W + a3XW)WV + c'X
Y = b0 + a0b1 + a1b1X + a2b1W + a3b1XW + b2W + b3V + a0b4W + a1b4XW + a2b4WW + a3b4XWW + a0b5V + a1b5XV + a2b5WV + a3b5XWV + b6WV + a0b7WV + a1b7XWV + a2b7WWV + a3b7XWWV + c'X
Y = (b0 + a0b1 + a2b1W + b2W + b3V + a0b4W + a2b4WW + a0b5V + a2b5WV + b6WV + a0b7WV + a2b7WWV) + (a1b1 + a3b1W + a1b4W + a3b4WW + a1b5V + a3b5WV + a1b7WV + a3b7WWV + c')X
X对Y的间接效应(在给定W和V值下):(a1 + a3W)(b1 + b4W + b5V + b7WV)

数学公式7

Y = b0 + b1M + b2W + b3V + b4MW + b5MV + b6WV + b7MWV + c'X
M = a0 + a1X + a2W + a3XW
Y = b0 + b1(a0 + a1X + a2W + a3XW) + b2W + b3V + b4(a0 + a1X + a2W + a3XW)W + b5(a0 + a1X + a2W + a3XW)V + b6WV + b7(a0 + a1X + a2W + a3XW)WV + c'X
Y = b0 + a0b1 + a1b1X + a2b1W + a3b1XW + b2W + b3V + a0b4W + a1b4XW + a2b4WW + a3b4XWW + a0b5V + a1b5XV + a2b5WV + a3b5XWV + b6WV + a0b7WV + a1b7XWV + a2b7WWV + a3b7XWWV + c'X
Y = (b0 + a0b1 + a2b1W + b2W + b3V + a0b4W + a2b4WW + a0b5V + a2b5WV + b6WV + a0b7WV + a2b7WWV) + (a1b1 + a3b1W + a1b4W + a3b4WW + a1b5V + a3b5WV + a1b7WV + a3b7WWV + c')X
X对Y的间接效应(在给定W和V值下):(a1 + a3W)(b1 + b4W + b5V + b7WV)
X对Y的直接效应:c'

代码解读1

USEVARIABLES = X1 X2 X3 X4 M1 M2 M3 M4
W1 W2 W3 W4 V1 V2 V3 V4
Y1 Y2 Y3 Y4;

代码解读2

USEVARIABLES = X1 X2 X3 X4 M1 M2 M3 M4
W1 W2 W3 W4 V1 V2 V3 V4
Y1 Y2 Y3 Y4;
ANALYSIS:
TYPE = GENERAL RANDOM;
ESTIMATOR = ML;
ALGORITHM = INTEGRATION;

代码解读3

USEVARIABLES = X1 X2 X3 X4 M1 M2 M3 M4
W1 W2 W3 W4 V1 V2 V3 V4
Y1 Y2 Y3 Y4;
ANALYSIS:
TYPE = GENERAL RANDOM;
ESTIMATOR = ML;
ALGORITHM = INTEGRATION;
MODEL:
X BY X1 X2 X3 X4;
M BY M1 M2 M3 M4;
W BY W1* W2 W3 W4;
V BY V1* V2 V3 V4;
Y BY Y1 Y2 Y3 Y4;

代码解读4

USEVARIABLES = X1 X2 X3 X4 M1 M2 M3 M4
W1 W2 W3 W4 V1 V2 V3 V4
Y1 Y2 Y3 Y4;
ANALYSIS:
TYPE = GENERAL RANDOM;
ESTIMATOR = ML;
ALGORITHM = INTEGRATION;
MODEL:
X BY X1 X2 X3 X4;
M BY M1 M2 M3 M4;
W BY W1* W2 W3 W4;
V BY V1* V2 V3 V4;
Y BY Y1 Y2 Y3 Y4;
W@1; V@1;

代码解读5

USEVARIABLES = X1 X2 X3 X4 M1 M2 M3 M4
W1 W2 W3 W4 V1 V2 V3 V4
Y1 Y2 Y3 Y4;
ANALYSIS:
TYPE = GENERAL RANDOM;
ESTIMATOR = ML;
ALGORITHM = INTEGRATION;
MODEL:
X BY X1 X2 X3 X4;
M BY M1 M2 M3 M4;
W BY W1* W2 W3 W4;
V BY V1* V2 V3 V4;
Y BY Y1 Y2 Y3 Y4;
W@1; V@1;
MW | M XWITH W;
MV | M XWITH V;
XW | X XWITH W;
WV | W XWITH V;
MWV | M XWITH WV;

代码解读6

USEVARIABLES = X1 X2 X3 X4 M1 M2 M3 M4
W1 W2 W3 W4 V1 V2 V3 V4
Y1 Y2 Y3 Y4;
ANALYSIS:
TYPE = GENERAL RANDOM;
ESTIMATOR = ML;
ALGORITHM = INTEGRATION;
MODEL:
X BY X1 X2 X3 X4;
M BY M1 M2 M3 M4;
W BY W1* W2 W3 W4;
V BY V1* V2 V3 V4;
Y BY Y1 Y2 Y3 Y4;
W@1; V@1;
MW | M XWITH W;
MV | M XWITH V;
XW | X XWITH W;
WV | W XWITH V;
MWV | M XWITH WV;
Y ON M (b1);
Y ON W (b2);
Y ON V (b3);
Y ON MW (b4);
Y ON MV (b5);
Y ON WV (b6);
Y ON MWV (b7);
Y ON X(cdash);

代码解读7

USEVARIABLES = X1 X2 X3 X4 M1 M2 M3 M4
W1 W2 W3 W4 V1 V2 V3 V4
Y1 Y2 Y3 Y4;
ANALYSIS:
TYPE = GENERAL RANDOM;
ESTIMATOR = ML;
ALGORITHM = INTEGRATION;
MODEL:
X BY X1 X2 X3 X4;
M BY M1 M2 M3 M4;
W BY W1* W2 W3 W4;
V BY V1* V2 V3 V4;
Y BY Y1 Y2 Y3 Y4;
W@1; V@1;
MW | M XWITH W;
MV | M XWITH V;
XW | X XWITH W;
WV | W XWITH V;
MWV | M XWITH WV;
Y ON M (b1);
Y ON W (b2);
Y ON V (b3);
Y ON MW (b4);
Y ON MV (b5);
Y ON WV (b6);
Y ON MWV (b7);
Y ON X(cdash);
M ON X (a1);
M ON W (a2);
M ON XW (a3);

代码解读8

USEVARIABLES = X1 X2 X3 X4 M1 M2 M3 M4
W1 W2 W3 W4 V1 V2 V3 V4
Y1 Y2 Y3 Y4;
ANALYSIS:
TYPE = GENERAL RANDOM;
ESTIMATOR = ML;
ALGORITHM = INTEGRATION;
MODEL:
X BY X1 X2 X3 X4;
M BY M1 M2 M3 M4;
W BY W1* W2 W3 W4;
V BY V1* V2 V3 V4;
Y BY Y1 Y2 Y3 Y4;
W@1; V@1;
MW | M XWITH W;
MV | M XWITH V;
XW | X XWITH W;
WV | W XWITH V;
MWV | M XWITH WV;
Y ON M (b1);
Y ON W (b2);
Y ON V (b3);
Y ON MW (b4);
Y ON MV (b5);
Y ON WV (b6);
Y ON MWV (b7);
Y ON X(cdash);
M ON X (a1);
M ON W (a2);
M ON XW (a3);
MODEL CONSTRAINT:
NEW(LOW_W MED_W HIGH_W LOW_V MED_V HIGH_V ...);
LOW_W = -1; ... HIGH_V = 1;

代码解读9

USEVARIABLES = X1 X2 X3 X4 M1 M2 M3 M4
W1 W2 W3 W4 V1 V2 V3 V4
Y1 Y2 Y3 Y4;
ANALYSIS:
TYPE = GENERAL RANDOM;
ESTIMATOR = ML;
ALGORITHM = INTEGRATION;
MODEL:
X BY X1 X2 X3 X4;
M BY M1 M2 M3 M4;
W BY W1* W2 W3 W4;
V BY V1* V2 V3 V4;
Y BY Y1 Y2 Y3 Y4;
W@1; V@1;
MW | M XWITH W;
MV | M XWITH V;
XW | X XWITH W;
WV | W XWITH V;
MWV | M XWITH WV;
Y ON M (b1);
Y ON W (b2);
Y ON V (b3);
Y ON MW (b4);
Y ON MV (b5);
Y ON WV (b6);
Y ON MWV (b7);
Y ON X(cdash);
M ON X (a1);
M ON W (a2);
M ON XW (a3);
MODEL CONSTRAINT:
NEW(LOW_W MED_W HIGH_W LOW_V MED_V HIGH_V ...);
LOW_W = -1; ... HIGH_V = 1;
ILOW_LOV = a1*b1 + a3*b1*LOW_W + ...;
IMEW_LOV = ...;
... 
TLOW_LOV = ILOW_LOV + cdash; ...

代码解读10

USEVARIABLES = X1 X2 X3 X4 M1 M2 M3 M4
W1 W2 W3 W4 V1 V2 V3 V4
Y1 Y2 Y3 Y4;
ANALYSIS:
TYPE = GENERAL RANDOM;
ESTIMATOR = ML;
ALGORITHM = INTEGRATION;
MODEL:
X BY X1 X2 X3 X4;
M BY M1 M2 M3 M4;
W BY W1* W2 W3 W4;
V BY V1* V2 V3 V4;
Y BY Y1 Y2 Y3 Y4;
W@1; V@1;
MW | M XWITH W;
MV | M XWITH V;
XW | X XWITH W;
WV | W XWITH V;
MWV | M XWITH WV;
Y ON M (b1);
Y ON W (b2);
Y ON V (b3);
Y ON MW (b4);
Y ON MV (b5);
Y ON WV (b6);
Y ON MWV (b7);
Y ON X(cdash);
M ON X (a1);
M ON W (a2);
M ON XW (a3);
MODEL CONSTRAINT:
NEW(LOW_W MED_W HIGH_W LOW_V MED_V HIGH_V ...);
LOW_W = -1; ... HIGH_V = 1;
ILOW_LOV = a1*b1 + a3*b1*LOW_W + ...;
IMEW_LOV = ...;
... 
TLOW_LOV = ILOW_LOV + cdash; ...
PLOT(...);
LOOP(XVAL,-3,3,0.1);
...
PLOT: TYPE = plot2;

代码解读11

USEVARIABLES = X1 X2 X3 X4 M1 M2 M3 M4
W1 W2 W3 W4 V1 V2 V3 V4
Y1 Y2 Y3 Y4;
ANALYSIS:
TYPE = GENERAL RANDOM;
ESTIMATOR = ML;
ALGORITHM = INTEGRATION;
MODEL:
X BY X1 X2 X3 X4;
M BY M1 M2 M3 M4;
W BY W1* W2 W3 W4;
V BY V1* V2 V3 V4;
Y BY Y1 Y2 Y3 Y4;
W@1; V@1;
MW | M XWITH W;
MV | M XWITH V;
XW | X XWITH W;
WV | W XWITH V;
MWV | M XWITH WV;
Y ON M (b1);
Y ON W (b2);
Y ON V (b3);
Y ON MW (b4);
Y ON MV (b5);
Y ON WV (b6);
Y ON MWV (b7);
Y ON X(cdash);
M ON X (a1);
M ON W (a2);
M ON XW (a3);
MODEL CONSTRAINT:
NEW(LOW_W MED_W HIGH_W LOW_V MED_V HIGH_V ...);
LOW_W = -1; ... HIGH_V = 1;
ILOW_LOV = a1*b1 + a3*b1*LOW_W + ...;
IMEW_LOV = ...;
... 
TLOW_LOV = ILOW_LOV + cdash; ...
PLOT(...);
LOOP(XVAL,-3,3,0.1);
...
PLOT: TYPE = plot2;
OUTPUT: CINT;

资源汇总

  • 本视频讲义地址: https://mlln.cn/mplus-model-templates/model70latent.html
  • 图书《MPlus中介调节模型》打包下载: 点击下载
  • 图书《MPlus中介调节模型》在线看: 点击查看
  • 视频教程: 点击这里打开视频
  • Mplus 模型模板教程列表: https://mlln.cn/mplus-model-templates
  • 统计咨询: https://wx.zsxq.com/group/88888188828842