Mplus model69latent 模型讲解

来自图书《MPlus中介调节模型》

使用Mplus进行复杂模型分析:中介、调节与调节中介模型

  • 理论模型
  • 数学模型
  • 数学推导
  • 代码解读

理论模型

数学模型

数学公式1

Y = b0 + b1M + b2MW + c1'X + c2'W + c3'Z + c4'XW + c5'XZ + c6'WZ + c7'XWZ
M = a0 + a1X + a2W + a3Z + a4XW + a5XZ + a6WZ + a7XWZ

数学公式2

Y = b0 + b1M + b2MW + c1'X + c2'W + c3'Z + c4'XW + c5'XZ + c6'WZ + c7'XWZ
M = a0 + a1X + a2W + a3Z + a4XW + a5XZ + a6WZ + a7XWZ
Y = b0 + b1(a0 + a1X + a2W + a3Z + a4XW + a5XZ + a6WZ + a7XWZ) + b2(a0 + a1X + a2W + a3Z + a4XW + a5XZ + a6WZ + a7XWZ)W + c1'X + c2'W + c3'Z + c4'XW + c5'XZ + c6'WZ + c7'XWZ

数学公式3

Y = b0 + b1M + b2MW + c1'X + c2'W + c3'Z + c4'XW + c5'XZ + c6'WZ + c7'XWZ
M = a0 + a1X + a2W + a3Z + a4XW + a5XZ + a6WZ + a7XWZ
Y = b0 + b1(a0 + a1X + a2W + a3Z + a4XW + a5XZ + a6WZ + a7XWZ) + b2(a0 + a1X + a2W + a3Z + a4XW + a5XZ + a6WZ + a7XWZ)W + c1'X + c2'W + c3'Z + c4'XW + c5'XZ + c6'WZ + c7'XWZ
Y = b0 + a0b1 + a1b1X + a2b1W + a3b1Z + a4b1XW + a5b1XZ + a6b1WZ + a7b1XWZ + a0b2W + a1b2XW + a2b2WW + a3b2ZW + a4b2XWW + a5b2XZW + a6b2WWZ + a7b2XWWZ + c1'X + c2'W + c3'Z + c4'XW + c5'XZ + c6'WZ + c7'XWZ

数学公式4

Y = b0 + b1M + b2MW + c1'X + c2'W + c3'Z + c4'XW + c5'XZ + c6'WZ + c7'XWZ
M = a0 + a1X + a2W + a3Z + a4XW + a5XZ + a6WZ + a7XWZ
Y = b0 + b1(a0 + a1X + a2W + a3Z + a4XW + a5XZ + a6WZ + a7XWZ) + b2(a0 + a1X + a2W + a3Z + a4XW + a5XZ + a6WZ + a7XWZ)W + c1'X + c2'W + c3'Z + c4'XW + c5'XZ + c6'WZ + c7'XWZ
Y = b0 + a0b1 + a1b1X + a2b1W + a3b1Z + a4b1XW + a5b1XZ + a6b1WZ + a7b1XWZ + a0b2W + a1b2XW + a2b2WW + a3b2ZW + a4b2XWW + a5b2XZW + a6b2WWZ + a7b2XWWZ + c1'X + c2'W + c3'Z + c4'XW + c5'XZ + c6'WZ + c7'XWZ
Y = (b0 + a0b1 + a2b1W + a3b1Z + a6b1WZ + a0b2W + a2b2WW + a3b2ZW + a6b2WWZ + c2'W + c3'Z + c6'WZ) + (a1b1 + a4b1W + a5b1Z + a7b1WZ + a1b2W + a4b2WW + a5b2ZW + a7b2WWZ + c1' + c4'W + c5'Z + c7'WZ)X

数学公式5

Y = b0 + b1M + b2MW + c1'X + c2'W + c3'Z + c4'XW + c5'XZ + c6'WZ + c7'XWZ
M = a0 + a1X + a2W + a3Z + a4XW + a5XZ + a6WZ + a7XWZ
Y = b0 + b1(a0 + a1X + a2W + a3Z + a4XW + a5XZ + a6WZ + a7XWZ) + b2(a0 + a1X + a2W + a3Z + a4XW + a5XZ + a6WZ + a7XWZ)W + c1'X + c2'W + c3'Z + c4'XW + c5'XZ + c6'WZ + c7'XWZ
Y = b0 + a0b1 + a1b1X + a2b1W + a3b1Z + a4b1XW + a5b1XZ + a6b1WZ + a7b1XWZ + a0b2W + a1b2XW + a2b2WW + a3b2ZW + a4b2XWW + a5b2XZW + a6b2WWZ + a7b2XWWZ + c1'X + c2'W + c3'Z + c4'XW + c5'XZ + c6'WZ + c7'XWZ
Y = (b0 + a0b1 + a2b1W + a3b1Z + a6b1WZ + a0b2W + a2b2WW + a3b2ZW + a6b2WWZ + c2'W + c3'Z + c6'WZ) + (a1b1 + a4b1W + a5b1Z + a7b1WZ + a1b2W + a4b2WW + a5b2ZW + a7b2WWZ + c1' + c4'W + c5'Z + c7'WZ)X
X对Y的一个间接效应(以W,Z为条件):(a1 + a4W + a5Z + a7WZ)(b1 + b2W)
X对Y的一个直接效应(以W,Z为条件):c1' + c4'W + c5'Z + c7'WZ

代码解读1

USEVARIABLES = X1 X2 X3 X4 M1 M2 M3 M4 W1 W2 W3 W4 Z1 Z2 Z3 Z4 Y1 Y2 Y3 Y4;

代码解读2

USEVARIABLES = X1 X2 X3 X4 M1 M2 M3 M4 W1 W2 W3 W4 Z1 Z2 Z3 Z4 Y1 Y2 Y3 Y4;
ANALYSIS:
TYPE = GENERAL RANDOM;
ESTIMATOR = ML;
ALGORITHM = INTEGRATION;

代码解读3

USEVARIABLES = X1 X2 X3 X4 M1 M2 M3 M4 W1 W2 W3 W4 Z1 Z2 Z3 Z4 Y1 Y2 Y3 Y4;
ANALYSIS:
TYPE = GENERAL RANDOM;
ESTIMATOR = ML;
ALGORITHM = INTEGRATION;
MODEL:
X BY X1 X2 X3 X4;
M BY M1 M2 M3 M4;
W BY W1* W2 W3 W4;
Z BY Z1* Z2 Z3 Z4;
Y BY Y1 Y2 Y3 Y4;

代码解读4

USEVARIABLES = X1 X2 X3 X4 M1 M2 M3 M4 W1 W2 W3 W4 Z1 Z2 Z3 Z4 Y1 Y2 Y3 Y4;
ANALYSIS:
TYPE = GENERAL RANDOM;
ESTIMATOR = ML;
ALGORITHM = INTEGRATION;
MODEL:
X BY X1 X2 X3 X4;
M BY M1 M2 M3 M4;
W BY W1* W2 W3 W4;
Z BY Z1* Z2 Z3 Z4;
Y BY Y1 Y2 Y3 Y4;
W@1; Z@1;

代码解读5

USEVARIABLES = X1 X2 X3 X4 M1 M2 M3 M4 W1 W2 W3 W4 Z1 Z2 Z3 Z4 Y1 Y2 Y3 Y4;
ANALYSIS:
TYPE = GENERAL RANDOM;
ESTIMATOR = ML;
ALGORITHM = INTEGRATION;
MODEL:
X BY X1 X2 X3 X4;
M BY M1 M2 M3 M4;
W BY W1* W2 W3 W4;
Z BY Z1* Z2 Z3 Z4;
Y BY Y1 Y2 Y3 Y4;
W@1; Z@1;
MW | M XWITH W;
XW | X XWITH W;
XZ | X XWITH Z;
WZ | W XWITH Z;
XWZ | X XWITH WZ;

代码解读6

USEVARIABLES = X1 X2 X3 X4 M1 M2 M3 M4 W1 W2 W3 W4 Z1 Z2 Z3 Z4 Y1 Y2 Y3 Y4;
ANALYSIS:
TYPE = GENERAL RANDOM;
ESTIMATOR = ML;
ALGORITHM = INTEGRATION;
MODEL:
X BY X1 X2 X3 X4;
M BY M1 M2 M3 M4;
W BY W1* W2 W3 W4;
Z BY Z1* Z2 Z3 Z4;
Y BY Y1 Y2 Y3 Y4;
W@1; Z@1;
MW | M XWITH W;
XW | X XWITH W;
XZ | X XWITH Z;
WZ | W XWITH Z;
XWZ | X XWITH WZ;
Y ON M (b1); ... Y ON XWZ (cdash7);

代码解读7

USEVARIABLES = X1 X2 X3 X4 M1 M2 M3 M4 W1 W2 W3 W4 Z1 Z2 Z3 Z4 Y1 Y2 Y3 Y4;
ANALYSIS:
TYPE = GENERAL RANDOM;
ESTIMATOR = ML;
ALGORITHM = INTEGRATION;
MODEL:
X BY X1 X2 X3 X4;
M BY M1 M2 M3 M4;
W BY W1* W2 W3 W4;
Z BY Z1* Z2 Z3 Z4;
Y BY Y1 Y2 Y3 Y4;
W@1; Z@1;
MW | M XWITH W;
XW | X XWITH W;
XZ | X XWITH Z;
WZ | W XWITH Z;
XWZ | X XWITH WZ;
Y ON M (b1); ... Y ON XWZ (cdash7);
M ON X (a1); ... M ON XWZ (a7);

代码解读8

USEVARIABLES = X1 X2 X3 X4 M1 M2 M3 M4 W1 W2 W3 W4 Z1 Z2 Z3 Z4 Y1 Y2 Y3 Y4;
ANALYSIS:
TYPE = GENERAL RANDOM;
ESTIMATOR = ML;
ALGORITHM = INTEGRATION;
MODEL:
X BY X1 X2 X3 X4;
M BY M1 M2 M3 M4;
W BY W1* W2 W3 W4;
Z BY Z1* Z2 Z3 Z4;
Y BY Y1 Y2 Y3 Y4;
W@1; Z@1;
MW | M XWITH W;
XW | X XWITH W;
XZ | X XWITH Z;
WZ | W XWITH Z;
XWZ | X XWITH WZ;
Y ON M (b1); ... Y ON XWZ (cdash7);
M ON X (a1); ... M ON XWZ (a7);
MODEL CONSTRAINT:
NEW(LOW_W MED_W HIGH_W LOW_Z MED_Z HIGH_Z ...);
LOW_W = -1; MED_W = 0; HIGH_W = 1; ...

代码解读9

USEVARIABLES = X1 X2 X3 X4 M1 M2 M3 M4 W1 W2 W3 W4 Z1 Z2 Z3 Z4 Y1 Y2 Y3 Y4;
ANALYSIS:
TYPE = GENERAL RANDOM;
ESTIMATOR = ML;
ALGORITHM = INTEGRATION;
MODEL:
X BY X1 X2 X3 X4;
M BY M1 M2 M3 M4;
W BY W1* W2 W3 W4;
Z BY Z1* Z2 Z3 Z4;
Y BY Y1 Y2 Y3 Y4;
W@1; Z@1;
MW | M XWITH W;
XW | X XWITH W;
XZ | X XWITH Z;
WZ | W XWITH Z;
XWZ | X XWITH WZ;
Y ON M (b1); ... Y ON XWZ (cdash7);
M ON X (a1); ... M ON XWZ (a7);
MODEL CONSTRAINT:
NEW(LOW_W MED_W HIGH_W LOW_Z MED_Z HIGH_Z ...);
LOW_W = -1; MED_W = 0; HIGH_W = 1; ...
ILOW_LOZ = a1*b1 + ...; ... IHIW_HIZ = ...;

代码解读10

USEVARIABLES = X1 X2 X3 X4 M1 M2 M3 M4 W1 W2 W3 W4 Z1 Z2 Z3 Z4 Y1 Y2 Y3 Y4;
ANALYSIS:
TYPE = GENERAL RANDOM;
ESTIMATOR = ML;
ALGORITHM = INTEGRATION;
MODEL:
X BY X1 X2 X3 X4;
M BY M1 M2 M3 M4;
W BY W1* W2 W3 W4;
Z BY Z1* Z2 Z3 Z4;
Y BY Y1 Y2 Y3 Y4;
W@1; Z@1;
MW | M XWITH W;
XW | X XWITH W;
XZ | X XWITH Z;
WZ | W XWITH Z;
XWZ | X XWITH WZ;
Y ON M (b1); ... Y ON XWZ (cdash7);
M ON X (a1); ... M ON XWZ (a7);
MODEL CONSTRAINT:
NEW(LOW_W MED_W HIGH_W LOW_Z MED_Z HIGH_Z ...);
LOW_W = -1; MED_W = 0; HIGH_W = 1; ...
ILOW_LOZ = a1*b1 + ...; ... IHIW_HIZ = ...;
DLOW_LOZ = ...; ... DHIW_HIZ = ...;
TLOW_LOZ = ...; ... THIW_HIZ = ...;

代码解读11

USEVARIABLES = X1 X2 X3 X4 M1 M2 M3 M4 W1 W2 W3 W4 Z1 Z2 Z3 Z4 Y1 Y2 Y3 Y4;
ANALYSIS:
TYPE = GENERAL RANDOM;
ESTIMATOR = ML;
ALGORITHM = INTEGRATION;
MODEL:
X BY X1 X2 X3 X4;
M BY M1 M2 M3 M4;
W BY W1* W2 W3 W4;
Z BY Z1* Z2 Z3 Z4;
Y BY Y1 Y2 Y3 Y4;
W@1; Z@1;
MW | M XWITH W;
XW | X XWITH W;
XZ | X XWITH Z;
WZ | W XWITH Z;
XWZ | X XWITH WZ;
Y ON M (b1); ... Y ON XWZ (cdash7);
M ON X (a1); ... M ON XWZ (a7);
MODEL CONSTRAINT:
NEW(LOW_W MED_W HIGH_W LOW_Z MED_Z HIGH_Z ...);
LOW_W = -1; MED_W = 0; HIGH_W = 1; ...
ILOW_LOZ = a1*b1 + ...; ... IHIW_HIZ = ...;
DLOW_LOZ = ...; ... DHIW_HIZ = ...;
TLOW_LOZ = ...; ... THIW_HIZ = ...;
PLOT(...);
LOOP(XVAL,-3,3,0.1); ...

代码解读12

USEVARIABLES = X1 X2 X3 X4 M1 M2 M3 M4 W1 W2 W3 W4 Z1 Z2 Z3 Z4 Y1 Y2 Y3 Y4;
ANALYSIS:
TYPE = GENERAL RANDOM;
ESTIMATOR = ML;
ALGORITHM = INTEGRATION;
MODEL:
X BY X1 X2 X3 X4;
M BY M1 M2 M3 M4;
W BY W1* W2 W3 W4;
Z BY Z1* Z2 Z3 Z4;
Y BY Y1 Y2 Y3 Y4;
W@1; Z@1;
MW | M XWITH W;
XW | X XWITH W;
XZ | X XWITH Z;
WZ | W XWITH Z;
XWZ | X XWITH WZ;
Y ON M (b1); ... Y ON XWZ (cdash7);
M ON X (a1); ... M ON XWZ (a7);
MODEL CONSTRAINT:
NEW(LOW_W MED_W HIGH_W LOW_Z MED_Z HIGH_Z ...);
LOW_W = -1; MED_W = 0; HIGH_W = 1; ...
ILOW_LOZ = a1*b1 + ...; ... IHIW_HIZ = ...;
DLOW_LOZ = ...; ... DHIW_HIZ = ...;
TLOW_LOZ = ...; ... THIW_HIZ = ...;
PLOT(...);
LOOP(XVAL,-3,3,0.1); ...
PLOT: TYPE = plot2;
OUTPUT: CINT;

资源汇总

  • 本视频讲义地址: https://mlln.cn/mplus-model-templates/model69latent.html
  • 图书《MPlus中介调节模型》打包下载: 点击下载
  • 图书《MPlus中介调节模型》在线看: 点击查看
  • 视频教程: 点击这里打开视频
  • Mplus 模型模板教程列表: https://mlln.cn/mplus-model-templates
  • 统计咨询: https://wx.zsxq.com/group/88888188828842