Mplus model67latent 模型讲解

来自图书《MPlus中介调节模型》

使用Mplus进行复杂调节中介分析:完整代码示例

  • 理论模型
  • 数学模型
  • 数学推导
  • 代码解读

理论模型

数学模型

数学公式1

Y = b0 + b1M + b2MW + b3MV + c1'X + c2'W + c3'XW + c4'V + c5'XV

数学公式2

Y = b0 + b1M + b2MW + b3MV + c1'X + c2'W + c3'XW + c4'V + c5'XV
M = a0 + a1X + a2W + a3XW

数学公式3

Y = b0 + b1M + b2MW + b3MV + c1'X + c2'W + c3'XW + c4'V + c5'XV
M = a0 + a1X + a2W + a3XW
Y = b0 + b1(a0 + a1X + a2W + a3XW) + b2(a0 + a1X + a2W + a3XW)W + b3(a0 + a1X + a2W + a3XW)V + c1'X + c2'W + c3'XW + c4'V + c5'XV

数学公式4

Y = b0 + b1M + b2MW + b3MV + c1'X + c2'W + c3'XW + c4'V + c5'XV
M = a0 + a1X + a2W + a3XW
Y = b0 + b1(a0 + a1X + a2W + a3XW) + b2(a0 + a1X + a2W + a3XW)W + b3(a0 + a1X + a2W + a3XW)V + c1'X + c2'W + c3'XW + c4'V + c5'XV
Y = b0 + a0b1 + a1b1X + a2b1W + a3b1XW + a0b2W + a1b2XW + a2b2WW + a3b2XWW + a0b3V + a1b3XV + a2b3WV + a3b3XWV + c1'X + c2'W + c3'XW + c4'V + c5'XV

数学公式5

Y = b0 + b1M + b2MW + b3MV + c1'X + c2'W + c3'XW + c4'V + c5'XV
M = a0 + a1X + a2W + a3XW
Y = b0 + b1(a0 + a1X + a2W + a3XW) + b2(a0 + a1X + a2W + a3XW)W + b3(a0 + a1X + a2W + a3XW)V + c1'X + c2'W + c3'XW + c4'V + c5'XV
Y = b0 + a0b1 + a1b1X + a2b1W + a3b1XW + a0b2W + a1b2XW + a2b2WW + a3b2XWW + a0b3V + a1b3XV + a2b3WV + a3b3XWV + c1'X + c2'W + c3'XW + c4'V + c5'XV
Y = (b0 + a0b1 + a2b1W + a0b2W + a2b2WW + a0b3V + a2b3WV + c2'W + c4'V) + (a1b1 + a3b1W + a1b2W + a3b2WW + a1b3V + a3b3WV + c1' + c3'W + c5'V)X

数学公式6

Y = b0 + b1M + b2MW + b3MV + c1'X + c2'W + c3'XW + c4'V + c5'XV
M = a0 + a1X + a2W + a3XW
Y = b0 + b1(a0 + a1X + a2W + a3XW) + b2(a0 + a1X + a2W + a3XW)W + b3(a0 + a1X + a2W + a3XW)V + c1'X + c2'W + c3'XW + c4'V + c5'XV
Y = b0 + a0b1 + a1b1X + a2b1W + a3b1XW + a0b2W + a1b2XW + a2b2WW + a3b2XWW + a0b3V + a1b3XV + a2b3WV + a3b3XWV + c1'X + c2'W + c3'XW + c4'V + c5'XV
Y = (b0 + a0b1 + a2b1W + a0b2W + a2b2WW + a0b3V + a2b3WV + c2'W + c4'V) + (a1b1 + a3b1W + a1b2W + a3b2WW + a1b3V + a3b3WV + c1' + c3'W + c5'V)X
条件间接效应 (X对Y的间接效应,在W, V条件下):a1b1 + a3b1W + a1b2W + a3b2WW + a1b3V + a3b3WV = (a1 + a3W)(b1 + b2W + b3V)

数学公式7

Y = b0 + b1M + b2MW + b3MV + c1'X + c2'W + c3'XW + c4'V + c5'XV
M = a0 + a1X + a2W + a3XW
Y = b0 + b1(a0 + a1X + a2W + a3XW) + b2(a0 + a1X + a2W + a3XW)W + b3(a0 + a1X + a2W + a3XW)V + c1'X + c2'W + c3'XW + c4'V + c5'XV
Y = b0 + a0b1 + a1b1X + a2b1W + a3b1XW + a0b2W + a1b2XW + a2b2WW + a3b2XWW + a0b3V + a1b3XV + a2b3WV + a3b3XWV + c1'X + c2'W + c3'XW + c4'V + c5'XV
Y = (b0 + a0b1 + a2b1W + a0b2W + a2b2WW + a0b3V + a2b3WV + c2'W + c4'V) + (a1b1 + a3b1W + a1b2W + a3b2WW + a1b3V + a3b3WV + c1' + c3'W + c5'V)X
条件间接效应 (X对Y的间接效应,在W, V条件下):a1b1 + a3b1W + a1b2W + a3b2WW + a1b3V + a3b3WV = (a1 + a3W)(b1 + b2W + b3V)
条件直接效应 (X对Y的直接效应,在W, V条件下): c1' + c3'W + c5'V

代码解读1

USEVARIABLES = X1 X2 X3 X4 M1 M2 M3 M4
W1 W2 W3 W4 V1 V2 V3 V4
Y1 Y2 Y3 Y4;

代码解读2

USEVARIABLES = X1 X2 X3 X4 M1 M2 M3 M4
W1 W2 W3 W4 V1 V2 V3 V4
Y1 Y2 Y3 Y4;
ANALYSIS:
TYPE = GENERAL RANDOM;
ESTIMATOR = ML;
ALGORITHM = INTEGRATION;

代码解读3

USEVARIABLES = X1 X2 X3 X4 M1 M2 M3 M4
W1 W2 W3 W4 V1 V2 V3 V4
Y1 Y2 Y3 Y4;
ANALYSIS:
TYPE = GENERAL RANDOM;
ESTIMATOR = ML;
ALGORITHM = INTEGRATION;
MODEL:
X BY X1 X2 X3 X4;
M BY M1 M2 M3 M4;
W BY W1* W2 W3 W4;
V BY V1* V2 V3 V4;
Y BY Y1 Y2 Y3 Y4;
W@1; V@1;

代码解读4

USEVARIABLES = X1 X2 X3 X4 M1 M2 M3 M4
W1 W2 W3 W4 V1 V2 V3 V4
Y1 Y2 Y3 Y4;
ANALYSIS:
TYPE = GENERAL RANDOM;
ESTIMATOR = ML;
ALGORITHM = INTEGRATION;
MODEL:
X BY X1 X2 X3 X4;
M BY M1 M2 M3 M4;
W BY W1* W2 W3 W4;
V BY V1* V2 V3 V4;
Y BY Y1 Y2 Y3 Y4;
W@1; V@1;
MW | M XWITH W;
MV | M XWITH V;
XW | X XWITH W;
XV | X XWITH V;

代码解读5

USEVARIABLES = X1 X2 X3 X4 M1 M2 M3 M4
W1 W2 W3 W4 V1 V2 V3 V4
Y1 Y2 Y3 Y4;
ANALYSIS:
TYPE = GENERAL RANDOM;
ESTIMATOR = ML;
ALGORITHM = INTEGRATION;
MODEL:
X BY X1 X2 X3 X4;
M BY M1 M2 M3 M4;
W BY W1* W2 W3 W4;
V BY V1* V2 V3 V4;
Y BY Y1 Y2 Y3 Y4;
W@1; V@1;
MW | M XWITH W;
MV | M XWITH V;
XW | X XWITH W;
XV | X XWITH V;
Y ON M (b1);
Y ON MW (b2);
Y ON MV (b3);
Y ON X(cdash1);
Y ON W (cdash2);
Y ON XW (cdash3);
Y ON V (cdash4);
Y ON XV (cdash5);

代码解读6

USEVARIABLES = X1 X2 X3 X4 M1 M2 M3 M4
W1 W2 W3 W4 V1 V2 V3 V4
Y1 Y2 Y3 Y4;
ANALYSIS:
TYPE = GENERAL RANDOM;
ESTIMATOR = ML;
ALGORITHM = INTEGRATION;
MODEL:
X BY X1 X2 X3 X4;
M BY M1 M2 M3 M4;
W BY W1* W2 W3 W4;
V BY V1* V2 V3 V4;
Y BY Y1 Y2 Y3 Y4;
W@1; V@1;
MW | M XWITH W;
MV | M XWITH V;
XW | X XWITH W;
XV | X XWITH V;
Y ON M (b1);
Y ON MW (b2);
Y ON MV (b3);
Y ON X(cdash1);
Y ON W (cdash2);
Y ON XW (cdash3);
Y ON V (cdash4);
Y ON XV (cdash5);
M ON X (a1);
M ON W (a2);
M ON XW (a3);

代码解读7

USEVARIABLES = X1 X2 X3 X4 M1 M2 M3 M4
W1 W2 W3 W4 V1 V2 V3 V4
Y1 Y2 Y3 Y4;
ANALYSIS:
TYPE = GENERAL RANDOM;
ESTIMATOR = ML;
ALGORITHM = INTEGRATION;
MODEL:
X BY X1 X2 X3 X4;
M BY M1 M2 M3 M4;
W BY W1* W2 W3 W4;
V BY V1* V2 V3 V4;
Y BY Y1 Y2 Y3 Y4;
W@1; V@1;
MW | M XWITH W;
MV | M XWITH V;
XW | X XWITH W;
XV | X XWITH V;
Y ON M (b1);
Y ON MW (b2);
Y ON MV (b3);
Y ON X(cdash1);
Y ON W (cdash2);
Y ON XW (cdash3);
Y ON V (cdash4);
Y ON XV (cdash5);
M ON X (a1);
M ON W (a2);
M ON XW (a3);
MODEL CONSTRAINT:
NEW(LOW_W MED_W HIGH_W LOW_V MED_V HIGH_V ...);
LOW_W = -1; MED_W = 0; HIGH_W = 1; ...

代码解读8

USEVARIABLES = X1 X2 X3 X4 M1 M2 M3 M4
W1 W2 W3 W4 V1 V2 V3 V4
Y1 Y2 Y3 Y4;
ANALYSIS:
TYPE = GENERAL RANDOM;
ESTIMATOR = ML;
ALGORITHM = INTEGRATION;
MODEL:
X BY X1 X2 X3 X4;
M BY M1 M2 M3 M4;
W BY W1* W2 W3 W4;
V BY V1* V2 V3 V4;
Y BY Y1 Y2 Y3 Y4;
W@1; V@1;
MW | M XWITH W;
MV | M XWITH V;
XW | X XWITH W;
XV | X XWITH V;
Y ON M (b1);
Y ON MW (b2);
Y ON MV (b3);
Y ON X(cdash1);
Y ON W (cdash2);
Y ON XW (cdash3);
Y ON V (cdash4);
Y ON XV (cdash5);
M ON X (a1);
M ON W (a2);
M ON XW (a3);
MODEL CONSTRAINT:
NEW(LOW_W MED_W HIGH_W LOW_V MED_V HIGH_V ...);
LOW_W = -1; MED_W = 0; HIGH_W = 1; ...
ILOW_LOV = a1*b1 + a3*b1*LOW_W + ...;
...其他间接效应计算...

代码解读9

USEVARIABLES = X1 X2 X3 X4 M1 M2 M3 M4
W1 W2 W3 W4 V1 V2 V3 V4
Y1 Y2 Y3 Y4;
ANALYSIS:
TYPE = GENERAL RANDOM;
ESTIMATOR = ML;
ALGORITHM = INTEGRATION;
MODEL:
X BY X1 X2 X3 X4;
M BY M1 M2 M3 M4;
W BY W1* W2 W3 W4;
V BY V1* V2 V3 V4;
Y BY Y1 Y2 Y3 Y4;
W@1; V@1;
MW | M XWITH W;
MV | M XWITH V;
XW | X XWITH W;
XV | X XWITH V;
Y ON M (b1);
Y ON MW (b2);
Y ON MV (b3);
Y ON X(cdash1);
Y ON W (cdash2);
Y ON XW (cdash3);
Y ON V (cdash4);
Y ON XV (cdash5);
M ON X (a1);
M ON W (a2);
M ON XW (a3);
MODEL CONSTRAINT:
NEW(LOW_W MED_W HIGH_W LOW_V MED_V HIGH_V ...);
LOW_W = -1; MED_W = 0; HIGH_W = 1; ...
ILOW_LOV = a1*b1 + a3*b1*LOW_W + ...;
...其他间接效应计算...
DLOW_LOV = cdash1 + cdash3*LOW_W + cdash5*LOW_V;
...其他直接效应计算...

代码解读10

USEVARIABLES = X1 X2 X3 X4 M1 M2 M3 M4
W1 W2 W3 W4 V1 V2 V3 V4
Y1 Y2 Y3 Y4;
ANALYSIS:
TYPE = GENERAL RANDOM;
ESTIMATOR = ML;
ALGORITHM = INTEGRATION;
MODEL:
X BY X1 X2 X3 X4;
M BY M1 M2 M3 M4;
W BY W1* W2 W3 W4;
V BY V1* V2 V3 V4;
Y BY Y1 Y2 Y3 Y4;
W@1; V@1;
MW | M XWITH W;
MV | M XWITH V;
XW | X XWITH W;
XV | X XWITH V;
Y ON M (b1);
Y ON MW (b2);
Y ON MV (b3);
Y ON X(cdash1);
Y ON W (cdash2);
Y ON XW (cdash3);
Y ON V (cdash4);
Y ON XV (cdash5);
M ON X (a1);
M ON W (a2);
M ON XW (a3);
MODEL CONSTRAINT:
NEW(LOW_W MED_W HIGH_W LOW_V MED_V HIGH_V ...);
LOW_W = -1; MED_W = 0; HIGH_W = 1; ...
ILOW_LOV = a1*b1 + a3*b1*LOW_W + ...;
...其他间接效应计算...
DLOW_LOV = cdash1 + cdash3*LOW_W + cdash5*LOW_V;
...其他直接效应计算...
TLOW_LOV = ILOW_LOV + DLOW_LOV;
...其他总效应计算...

代码解读11

USEVARIABLES = X1 X2 X3 X4 M1 M2 M3 M4
W1 W2 W3 W4 V1 V2 V3 V4
Y1 Y2 Y3 Y4;
ANALYSIS:
TYPE = GENERAL RANDOM;
ESTIMATOR = ML;
ALGORITHM = INTEGRATION;
MODEL:
X BY X1 X2 X3 X4;
M BY M1 M2 M3 M4;
W BY W1* W2 W3 W4;
V BY V1* V2 V3 V4;
Y BY Y1 Y2 Y3 Y4;
W@1; V@1;
MW | M XWITH W;
MV | M XWITH V;
XW | X XWITH W;
XV | X XWITH V;
Y ON M (b1);
Y ON MW (b2);
Y ON MV (b3);
Y ON X(cdash1);
Y ON W (cdash2);
Y ON XW (cdash3);
Y ON V (cdash4);
Y ON XV (cdash5);
M ON X (a1);
M ON W (a2);
M ON XW (a3);
MODEL CONSTRAINT:
NEW(LOW_W MED_W HIGH_W LOW_V MED_V HIGH_V ...);
LOW_W = -1; MED_W = 0; HIGH_W = 1; ...
ILOW_LOV = a1*b1 + a3*b1*LOW_W + ...;
...其他间接效应计算...
DLOW_LOV = cdash1 + cdash3*LOW_W + cdash5*LOW_V;
...其他直接效应计算...
TLOW_LOV = ILOW_LOV + DLOW_LOV;
...其他总效应计算...
PLOT(PLOW_LOV PMEW_LOV PHIW_LOV ...);
LOOP(XVAL,-3,3,0.1); ...

代码解读12

USEVARIABLES = X1 X2 X3 X4 M1 M2 M3 M4
W1 W2 W3 W4 V1 V2 V3 V4
Y1 Y2 Y3 Y4;
ANALYSIS:
TYPE = GENERAL RANDOM;
ESTIMATOR = ML;
ALGORITHM = INTEGRATION;
MODEL:
X BY X1 X2 X3 X4;
M BY M1 M2 M3 M4;
W BY W1* W2 W3 W4;
V BY V1* V2 V3 V4;
Y BY Y1 Y2 Y3 Y4;
W@1; V@1;
MW | M XWITH W;
MV | M XWITH V;
XW | X XWITH W;
XV | X XWITH V;
Y ON M (b1);
Y ON MW (b2);
Y ON MV (b3);
Y ON X(cdash1);
Y ON W (cdash2);
Y ON XW (cdash3);
Y ON V (cdash4);
Y ON XV (cdash5);
M ON X (a1);
M ON W (a2);
M ON XW (a3);
MODEL CONSTRAINT:
NEW(LOW_W MED_W HIGH_W LOW_V MED_V HIGH_V ...);
LOW_W = -1; MED_W = 0; HIGH_W = 1; ...
ILOW_LOV = a1*b1 + a3*b1*LOW_W + ...;
...其他间接效应计算...
DLOW_LOV = cdash1 + cdash3*LOW_W + cdash5*LOW_V;
...其他直接效应计算...
TLOW_LOV = ILOW_LOV + DLOW_LOV;
...其他总效应计算...
PLOT(PLOW_LOV PMEW_LOV PHIW_LOV ...);
LOOP(XVAL,-3,3,0.1); ...
PLOT: TYPE = plot2;
OUTPUT: CINT;

资源汇总

  • 本视频讲义地址: https://mlln.cn/mplus-model-templates/model67latent.html
  • 图书《MPlus中介调节模型》打包下载: 点击下载
  • 图书《MPlus中介调节模型》在线看: 点击查看
  • 视频教程: 点击这里打开视频
  • Mplus 模型模板教程列表: https://mlln.cn/mplus-model-templates
  • 统计咨询: https://wx.zsxq.com/group/88888188828842