Mplus model65latent 模型讲解

来自图书《MPlus中介调节模型》

Mplus中介、调节和调节中介模型构建教程

  • 理论模型
  • 数学模型
  • 代码解读
  • 模型结果解读与可视化

理论模型

数学模型

数学公式1

Y = b0 + b1M + b2V + b3MW + b4MV + c1'X + c2'W + c3'XW
M = a0 + a1X + a2W + a3XW

数学公式2

Y = b0 + b1M + b2V + b3MW + b4MV + c1'X + c2'W + c3'XW
M = a0 + a1X + a2W + a3XW
Y = b0 + b1(a0 + a1X + a2W + a3XW) + b2V + b3(a0 + a1X + a2W + a3XW)W + b4(a0 + a1X + a2W + a3XW)V + c1'X + c2'W + c3'XW

数学公式3

Y = b0 + b1M + b2V + b3MW + b4MV + c1'X + c2'W + c3'XW
M = a0 + a1X + a2W + a3XW
Y = b0 + b1(a0 + a1X + a2W + a3XW) + b2V + b3(a0 + a1X + a2W + a3XW)W + b4(a0 + a1X + a2W + a3XW)V + c1'X + c2'W + c3'XW
Y = b0 + a0b1 + a1b1X + a2b1W + a3b1XW + b2V + a0b3W + a1b3XW + a2b3WW + a3b3XWW + a0b4V + a1b4XV + a2b4WV + a3b4XWV + c1'X + c2'W + c3'XW

数学公式4

Y = b0 + b1M + b2V + b3MW + b4MV + c1'X + c2'W + c3'XW
M = a0 + a1X + a2W + a3XW
Y = b0 + b1(a0 + a1X + a2W + a3XW) + b2V + b3(a0 + a1X + a2W + a3XW)W + b4(a0 + a1X + a2W + a3XW)V + c1'X + c2'W + c3'XW
Y = b0 + a0b1 + a1b1X + a2b1W + a3b1XW + b2V + a0b3W + a1b3XW + a2b3WW + a3b3XWW + a0b4V + a1b4XV + a2b4WV + a3b4XWV + c1'X + c2'W + c3'XW
Y = (b0 + a0b1 + a2b1W + b2V + a0b3W + a2b3WW + a0b4V + a2b4W + c2'W) + (a1b1 + a3b1W + a1b3W + a3b3WW + a1b4V + a3b4WV + c1' + c3'W)X

数学公式5

Y = b0 + b1M + b2V + b3MW + b4MV + c1'X + c2'W + c3'XW
M = a0 + a1X + a2W + a3XW
Y = b0 + b1(a0 + a1X + a2W + a3XW) + b2V + b3(a0 + a1X + a2W + a3XW)W + b4(a0 + a1X + a2W + a3XW)V + c1'X + c2'W + c3'XW
Y = b0 + a0b1 + a1b1X + a2b1W + a3b1XW + b2V + a0b3W + a1b3XW + a2b3WW + a3b3XWW + a0b4V + a1b4XV + a2b4WV + a3b4XWV + c1'X + c2'W + c3'XW
Y = (b0 + a0b1 + a2b1W + b2V + a0b3W + a2b3WW + a0b4V + a2b4W + c2'W) + (a1b1 + a3b1W + a1b3W + a3b3WW + a1b4V + a3b4WV + c1' + c3'W)X
条件间接效应(X对Y的间接效应,受W, V影响): (a1 + a3W)(b1 + b3W + b4V)
条件直接效应(X对Y的直接效应,受W影响): c1' + c3'W

代码解读1

USEVARIABLES = X1 X2 X3 X4 M1 M2 M3 M4 W1 W2 W3 W4 V1 V2 V3 V4 Y1 Y2 Y3 Y4;

代码解读2

USEVARIABLES = X1 X2 X3 X4 M1 M2 M3 M4 W1 W2 W3 W4 V1 V2 V3 V4 Y1 Y2 Y3 Y4;
ANALYSIS: TYPE = GENERAL RANDOM; ESTIMATOR = ML; ALGORITHM = INTEGRATION;

代码解读3

USEVARIABLES = X1 X2 X3 X4 M1 M2 M3 M4 W1 W2 W3 W4 V1 V2 V3 V4 Y1 Y2 Y3 Y4;
ANALYSIS: TYPE = GENERAL RANDOM; ESTIMATOR = ML; ALGORITHM = INTEGRATION;
MODEL: X BY X1 X2 X3 X4; M BY M1 M2 M3 M4; W BY W1* W2 W3 W4; V BY V1* V2 V3 V4; Y BY Y1 Y2 Y3 Y4;

代码解读4

USEVARIABLES = X1 X2 X3 X4 M1 M2 M3 M4 W1 W2 W3 W4 V1 V2 V3 V4 Y1 Y2 Y3 Y4;
ANALYSIS: TYPE = GENERAL RANDOM; ESTIMATOR = ML; ALGORITHM = INTEGRATION;
MODEL: X BY X1 X2 X3 X4; M BY M1 M2 M3 M4; W BY W1* W2 W3 W4; V BY V1* V2 V3 V4; Y BY Y1 Y2 Y3 Y4;
W@1; V@1;

代码解读5

USEVARIABLES = X1 X2 X3 X4 M1 M2 M3 M4 W1 W2 W3 W4 V1 V2 V3 V4 Y1 Y2 Y3 Y4;
ANALYSIS: TYPE = GENERAL RANDOM; ESTIMATOR = ML; ALGORITHM = INTEGRATION;
MODEL: X BY X1 X2 X3 X4; M BY M1 M2 M3 M4; W BY W1* W2 W3 W4; V BY V1* V2 V3 V4; Y BY Y1 Y2 Y3 Y4;
W@1; V@1;
MW | M XWITH W; MV | M XWITH V; XW | X XWITH W;

代码解读6

USEVARIABLES = X1 X2 X3 X4 M1 M2 M3 M4 W1 W2 W3 W4 V1 V2 V3 V4 Y1 Y2 Y3 Y4;
ANALYSIS: TYPE = GENERAL RANDOM; ESTIMATOR = ML; ALGORITHM = INTEGRATION;
MODEL: X BY X1 X2 X3 X4; M BY M1 M2 M3 M4; W BY W1* W2 W3 W4; V BY V1* V2 V3 V4; Y BY Y1 Y2 Y3 Y4;
W@1; V@1;
MW | M XWITH W; MV | M XWITH V; XW | X XWITH W;
Y ON M (b1); Y ON V (b2); Y ON MW (b3); Y ON MV (b4); Y ON X (cdash1); Y ON W (cdash2); Y ON XW (cdash3);

代码解读7

USEVARIABLES = X1 X2 X3 X4 M1 M2 M3 M4 W1 W2 W3 W4 V1 V2 V3 V4 Y1 Y2 Y3 Y4;
ANALYSIS: TYPE = GENERAL RANDOM; ESTIMATOR = ML; ALGORITHM = INTEGRATION;
MODEL: X BY X1 X2 X3 X4; M BY M1 M2 M3 M4; W BY W1* W2 W3 W4; V BY V1* V2 V3 V4; Y BY Y1 Y2 Y3 Y4;
W@1; V@1;
MW | M XWITH W; MV | M XWITH V; XW | X XWITH W;
Y ON M (b1); Y ON V (b2); Y ON MW (b3); Y ON MV (b4); Y ON X (cdash1); Y ON W (cdash2); Y ON XW (cdash3);
M ON X (a1); M ON W (a2); M ON XW (a3);

代码解读8

USEVARIABLES = X1 X2 X3 X4 M1 M2 M3 M4 W1 W2 W3 W4 V1 V2 V3 V4 Y1 Y2 Y3 Y4;
ANALYSIS: TYPE = GENERAL RANDOM; ESTIMATOR = ML; ALGORITHM = INTEGRATION;
MODEL: X BY X1 X2 X3 X4; M BY M1 M2 M3 M4; W BY W1* W2 W3 W4; V BY V1* V2 V3 V4; Y BY Y1 Y2 Y3 Y4;
W@1; V@1;
MW | M XWITH W; MV | M XWITH V; XW | X XWITH W;
Y ON M (b1); Y ON V (b2); Y ON MW (b3); Y ON MV (b4); Y ON X (cdash1); Y ON W (cdash2); Y ON XW (cdash3);
M ON X (a1); M ON W (a2); M ON XW (a3);
MODEL CONSTRAINT: NEW(LOW_W MED_W HIGH_W LOW_V MED_V HIGH_V ...); LOW_W = -1; MED_W = 0; HIGH_W = 1; ...

代码解读9

USEVARIABLES = X1 X2 X3 X4 M1 M2 M3 M4 W1 W2 W3 W4 V1 V2 V3 V4 Y1 Y2 Y3 Y4;
ANALYSIS: TYPE = GENERAL RANDOM; ESTIMATOR = ML; ALGORITHM = INTEGRATION;
MODEL: X BY X1 X2 X3 X4; M BY M1 M2 M3 M4; W BY W1* W2 W3 W4; V BY V1* V2 V3 V4; Y BY Y1 Y2 Y3 Y4;
W@1; V@1;
MW | M XWITH W; MV | M XWITH V; XW | X XWITH W;
Y ON M (b1); Y ON V (b2); Y ON MW (b3); Y ON MV (b4); Y ON X (cdash1); Y ON W (cdash2); Y ON XW (cdash3);
M ON X (a1); M ON W (a2); M ON XW (a3);
MODEL CONSTRAINT: NEW(LOW_W MED_W HIGH_W LOW_V MED_V HIGH_V ...); LOW_W = -1; MED_W = 0; HIGH_W = 1; ...
ILOW_LOV = a1*b1 + a3*b1*LOW_W + ...;  (后续类似的计算)

代码解读10

USEVARIABLES = X1 X2 X3 X4 M1 M2 M3 M4 W1 W2 W3 W4 V1 V2 V3 V4 Y1 Y2 Y3 Y4;
ANALYSIS: TYPE = GENERAL RANDOM; ESTIMATOR = ML; ALGORITHM = INTEGRATION;
MODEL: X BY X1 X2 X3 X4; M BY M1 M2 M3 M4; W BY W1* W2 W3 W4; V BY V1* V2 V3 V4; Y BY Y1 Y2 Y3 Y4;
W@1; V@1;
MW | M XWITH W; MV | M XWITH V; XW | X XWITH W;
Y ON M (b1); Y ON V (b2); Y ON MW (b3); Y ON MV (b4); Y ON X (cdash1); Y ON W (cdash2); Y ON XW (cdash3);
M ON X (a1); M ON W (a2); M ON XW (a3);
MODEL CONSTRAINT: NEW(LOW_W MED_W HIGH_W LOW_V MED_V HIGH_V ...); LOW_W = -1; MED_W = 0; HIGH_W = 1; ...
ILOW_LOV = a1*b1 + a3*b1*LOW_W + ...;  (后续类似的计算)
DIR_LOWW = ...; DIR_MEDW = ...; DIR_HIW = ...; TLOW_LOV = ...; (后续类似的计算)

代码解读11

USEVARIABLES = X1 X2 X3 X4 M1 M2 M3 M4 W1 W2 W3 W4 V1 V2 V3 V4 Y1 Y2 Y3 Y4;
ANALYSIS: TYPE = GENERAL RANDOM; ESTIMATOR = ML; ALGORITHM = INTEGRATION;
MODEL: X BY X1 X2 X3 X4; M BY M1 M2 M3 M4; W BY W1* W2 W3 W4; V BY V1* V2 V3 V4; Y BY Y1 Y2 Y3 Y4;
W@1; V@1;
MW | M XWITH W; MV | M XWITH V; XW | X XWITH W;
Y ON M (b1); Y ON V (b2); Y ON MW (b3); Y ON MV (b4); Y ON X (cdash1); Y ON W (cdash2); Y ON XW (cdash3);
M ON X (a1); M ON W (a2); M ON XW (a3);
MODEL CONSTRAINT: NEW(LOW_W MED_W HIGH_W LOW_V MED_V HIGH_V ...); LOW_W = -1; MED_W = 0; HIGH_W = 1; ...
ILOW_LOV = a1*b1 + a3*b1*LOW_W + ...;  (后续类似的计算)
DIR_LOWW = ...; DIR_MEDW = ...; DIR_HIW = ...; TLOW_LOV = ...; (后续类似的计算)
PLOT(...); LOOP(XVAL,-3,3,0.1); PLOW_LOV = ILOW_LOV*XVAL; ...; PLOT: TYPE = plot2;

代码解读12

USEVARIABLES = X1 X2 X3 X4 M1 M2 M3 M4 W1 W2 W3 W4 V1 V2 V3 V4 Y1 Y2 Y3 Y4;
ANALYSIS: TYPE = GENERAL RANDOM; ESTIMATOR = ML; ALGORITHM = INTEGRATION;
MODEL: X BY X1 X2 X3 X4; M BY M1 M2 M3 M4; W BY W1* W2 W3 W4; V BY V1* V2 V3 V4; Y BY Y1 Y2 Y3 Y4;
W@1; V@1;
MW | M XWITH W; MV | M XWITH V; XW | X XWITH W;
Y ON M (b1); Y ON V (b2); Y ON MW (b3); Y ON MV (b4); Y ON X (cdash1); Y ON W (cdash2); Y ON XW (cdash3);
M ON X (a1); M ON W (a2); M ON XW (a3);
MODEL CONSTRAINT: NEW(LOW_W MED_W HIGH_W LOW_V MED_V HIGH_V ...); LOW_W = -1; MED_W = 0; HIGH_W = 1; ...
ILOW_LOV = a1*b1 + a3*b1*LOW_W + ...;  (后续类似的计算)
DIR_LOWW = ...; DIR_MEDW = ...; DIR_HIW = ...; TLOW_LOV = ...; (后续类似的计算)
PLOT(...); LOOP(XVAL,-3,3,0.1); PLOW_LOV = ILOW_LOV*XVAL; ...; PLOT: TYPE = plot2;
OUTPUT: CINT;

资源汇总

  • 本视频讲义地址: https://mlln.cn/mplus-model-templates/model65latent.html
  • 图书《MPlus中介调节模型》打包下载: 点击下载
  • 图书《MPlus中介调节模型》在线看: 点击查看
  • 视频教程: 点击这里打开视频
  • Mplus 模型模板教程列表: https://mlln.cn/mplus-model-templates
  • 统计咨询: https://wx.zsxq.com/group/88888188828842