Mplus model60latent 模型讲解

来自图书《MPlus中介调节模型》

Mplus模型60(潜变量):包含中介、调节和调节中介效应的模型构建教程

  • 理论模型
  • 数学模型
  • 代码解读
  • 条件间接效应计算与作图

理论模型

数学模型

数学公式1

Y = b0 + b1M + b2W + b3MW + c'X

数学公式2

Y = b0 + b1M + b2W + b3MW + c'X
M = a0 + a1X + a2W + a3Z + a4XW + a5XZ

数学公式3

Y = b0 + b1M + b2W + b3MW + c'X
M = a0 + a1X + a2W + a3Z + a4XW + a5XZ
Y = b0 + b1(a0 + a1X + a2W + a3Z + a4XW + a5XZ) + b2W + b3(a0 + a1X + a2W + a3Z + a4XW + a5XZ)W + c'X

数学公式4

Y = b0 + b1M + b2W + b3MW + c'X
M = a0 + a1X + a2W + a3Z + a4XW + a5XZ
Y = b0 + b1(a0 + a1X + a2W + a3Z + a4XW + a5XZ) + b2W + b3(a0 + a1X + a2W + a3Z + a4XW + a5XZ)W + c'X
Y = b0 + a0b1 + a1b1X + a2b1W + a3b1Z + a4b1XW + a5b1XZ + b2W + a0b3W + a1b3XW + a2b3WW + a3b3ZW + a4b3XWW + a5b3XZW + c'X

数学公式5

Y = b0 + b1M + b2W + b3MW + c'X
M = a0 + a1X + a2W + a3Z + a4XW + a5XZ
Y = b0 + b1(a0 + a1X + a2W + a3Z + a4XW + a5XZ) + b2W + b3(a0 + a1X + a2W + a3Z + a4XW + a5XZ)W + c'X
Y = b0 + a0b1 + a1b1X + a2b1W + a3b1Z + a4b1XW + a5b1XZ + b2W + a0b3W + a1b3XW + a2b3WW + a3b3ZW + a4b3XWW + a5b3XZW + c'X
Y = (b0 + a0b1 + a2b1W + a3b1Z + b2W + a0b3W + a2b3WW + a3b3ZW) + (a1b1 + a4b1W + a5b1Z + a1b3W + a4b3WW + a5b3ZW + c')X

数学公式6

Y = b0 + b1M + b2W + b3MW + c'X
M = a0 + a1X + a2W + a3Z + a4XW + a5XZ
Y = b0 + b1(a0 + a1X + a2W + a3Z + a4XW + a5XZ) + b2W + b3(a0 + a1X + a2W + a3Z + a4XW + a5XZ)W + c'X
Y = b0 + a0b1 + a1b1X + a2b1W + a3b1Z + a4b1XW + a5b1XZ + b2W + a0b3W + a1b3XW + a2b3WW + a3b3ZW + a4b3XWW + a5b3XZW + c'X
Y = (b0 + a0b1 + a2b1W + a3b1Z + b2W + a0b3W + a2b3WW + a3b3ZW) + (a1b1 + a4b1W + a5b1Z + a1b3W + a4b3WW + a5b3ZW + c')X
条件于 W 和 Z 的 X 对 Y 的间接效应为:(a1 + a4W + a5Z)(b1 + b3W)

数学公式7

Y = b0 + b1M + b2W + b3MW + c'X
M = a0 + a1X + a2W + a3Z + a4XW + a5XZ
Y = b0 + b1(a0 + a1X + a2W + a3Z + a4XW + a5XZ) + b2W + b3(a0 + a1X + a2W + a3Z + a4XW + a5XZ)W + c'X
Y = b0 + a0b1 + a1b1X + a2b1W + a3b1Z + a4b1XW + a5b1XZ + b2W + a0b3W + a1b3XW + a2b3WW + a3b3ZW + a4b3XWW + a5b3XZW + c'X
Y = (b0 + a0b1 + a2b1W + a3b1Z + b2W + a0b3W + a2b3WW + a3b3ZW) + (a1b1 + a4b1W + a5b1Z + a1b3W + a4b3WW + a5b3ZW + c')X
条件于 W 和 Z 的 X 对 Y 的间接效应为:(a1 + a4W + a5Z)(b1 + b3W)
X 对 Y 的直接效应为:c'

代码解读1

USEVARIABLES = X1 X2 X3 X4 M1 M2 M3 M4 W1 W2 W3 W4 Z1 Z2 Z3 Z4 Y1 Y2 Y3 Y4;

代码解读2

USEVARIABLES = X1 X2 X3 X4 M1 M2 M3 M4 W1 W2 W3 W4 Z1 Z2 Z3 Z4 Y1 Y2 Y3 Y4;
ANALYSIS:
TYPE = GENERAL RANDOM;
ESTIMATOR = ML;
ALGORITHM = INTEGRATION;

代码解读3

USEVARIABLES = X1 X2 X3 X4 M1 M2 M3 M4 W1 W2 W3 W4 Z1 Z2 Z3 Z4 Y1 Y2 Y3 Y4;
ANALYSIS:
TYPE = GENERAL RANDOM;
ESTIMATOR = ML;
ALGORITHM = INTEGRATION;
MODEL:
X BY X1 X2 X3 X4;
M BY M1 M2 M3 M4;
W BY W1* W2 W3 W4;
Z BY Z1* Z2 Z3 Z4;
Y BY Y1 Y2 Y3 Y4;

代码解读4

USEVARIABLES = X1 X2 X3 X4 M1 M2 M3 M4 W1 W2 W3 W4 Z1 Z2 Z3 Z4 Y1 Y2 Y3 Y4;
ANALYSIS:
TYPE = GENERAL RANDOM;
ESTIMATOR = ML;
ALGORITHM = INTEGRATION;
MODEL:
X BY X1 X2 X3 X4;
M BY M1 M2 M3 M4;
W BY W1* W2 W3 W4;
Z BY Z1* Z2 Z3 Z4;
Y BY Y1 Y2 Y3 Y4;
W@1;  Z@1;

代码解读5

USEVARIABLES = X1 X2 X3 X4 M1 M2 M3 M4 W1 W2 W3 W4 Z1 Z2 Z3 Z4 Y1 Y2 Y3 Y4;
ANALYSIS:
TYPE = GENERAL RANDOM;
ESTIMATOR = ML;
ALGORITHM = INTEGRATION;
MODEL:
X BY X1 X2 X3 X4;
M BY M1 M2 M3 M4;
W BY W1* W2 W3 W4;
Z BY Z1* Z2 Z3 Z4;
Y BY Y1 Y2 Y3 Y4;
W@1;  Z@1;
MW | M XWITH W;
XW | X XWITH W;
XZ | X XWITH Z;

代码解读6

USEVARIABLES = X1 X2 X3 X4 M1 M2 M3 M4 W1 W2 W3 W4 Z1 Z2 Z3 Z4 Y1 Y2 Y3 Y4;
ANALYSIS:
TYPE = GENERAL RANDOM;
ESTIMATOR = ML;
ALGORITHM = INTEGRATION;
MODEL:
X BY X1 X2 X3 X4;
M BY M1 M2 M3 M4;
W BY W1* W2 W3 W4;
Z BY Z1* Z2 Z3 Z4;
Y BY Y1 Y2 Y3 Y4;
W@1;  Z@1;
MW | M XWITH W;
XW | X XWITH W;
XZ | X XWITH Z;
Y ON M (b1);
Y ON W (b2);
Y ON MW (b3);
Y ON X (cdash);

代码解读7

USEVARIABLES = X1 X2 X3 X4 M1 M2 M3 M4 W1 W2 W3 W4 Z1 Z2 Z3 Z4 Y1 Y2 Y3 Y4;
ANALYSIS:
TYPE = GENERAL RANDOM;
ESTIMATOR = ML;
ALGORITHM = INTEGRATION;
MODEL:
X BY X1 X2 X3 X4;
M BY M1 M2 M3 M4;
W BY W1* W2 W3 W4;
Z BY Z1* Z2 Z3 Z4;
Y BY Y1 Y2 Y3 Y4;
W@1;  Z@1;
MW | M XWITH W;
XW | X XWITH W;
XZ | X XWITH Z;
Y ON M (b1);
Y ON W (b2);
Y ON MW (b3);
Y ON X (cdash);
M ON X (a1);
M ON W (a2);
M ON Z (a3);
M ON XW (a4);
M ON XZ (a5);

代码解读8

USEVARIABLES = X1 X2 X3 X4 M1 M2 M3 M4 W1 W2 W3 W4 Z1 Z2 Z3 Z4 Y1 Y2 Y3 Y4;
ANALYSIS:
TYPE = GENERAL RANDOM;
ESTIMATOR = ML;
ALGORITHM = INTEGRATION;
MODEL:
X BY X1 X2 X3 X4;
M BY M1 M2 M3 M4;
W BY W1* W2 W3 W4;
Z BY Z1* Z2 Z3 Z4;
Y BY Y1 Y2 Y3 Y4;
W@1;  Z@1;
MW | M XWITH W;
XW | X XWITH W;
XZ | X XWITH Z;
Y ON M (b1);
Y ON W (b2);
Y ON MW (b3);
Y ON X (cdash);
M ON X (a1);
M ON W (a2);
M ON Z (a3);
M ON XW (a4);
M ON XZ (a5);
MODEL CONSTRAINT:
NEW(LOW_W MED_W HIGH_W LOW_Z MED_Z HIGH_Z ...);
LOW_W = -1; ...

代码解读9

USEVARIABLES = X1 X2 X3 X4 M1 M2 M3 M4 W1 W2 W3 W4 Z1 Z2 Z3 Z4 Y1 Y2 Y3 Y4;
ANALYSIS:
TYPE = GENERAL RANDOM;
ESTIMATOR = ML;
ALGORITHM = INTEGRATION;
MODEL:
X BY X1 X2 X3 X4;
M BY M1 M2 M3 M4;
W BY W1* W2 W3 W4;
Z BY Z1* Z2 Z3 Z4;
Y BY Y1 Y2 Y3 Y4;
W@1;  Z@1;
MW | M XWITH W;
XW | X XWITH W;
XZ | X XWITH Z;
Y ON M (b1);
Y ON W (b2);
Y ON MW (b3);
Y ON X (cdash);
M ON X (a1);
M ON W (a2);
M ON Z (a3);
M ON XW (a4);
M ON XZ (a5);
MODEL CONSTRAINT:
NEW(LOW_W MED_W HIGH_W LOW_Z MED_Z HIGH_Z ...);
LOW_W = -1; ...
ILOW_LOZ = a1*b1 + a4*b1*LOW_W + a5*b1*LOW_Z + a1*b3*LOW_W + a4*b3*LOW_W*LOW_W + a5*b3*LOW_Z*LOW_W; ...

代码解读10

USEVARIABLES = X1 X2 X3 X4 M1 M2 M3 M4 W1 W2 W3 W4 Z1 Z2 Z3 Z4 Y1 Y2 Y3 Y4;
ANALYSIS:
TYPE = GENERAL RANDOM;
ESTIMATOR = ML;
ALGORITHM = INTEGRATION;
MODEL:
X BY X1 X2 X3 X4;
M BY M1 M2 M3 M4;
W BY W1* W2 W3 W4;
Z BY Z1* Z2 Z3 Z4;
Y BY Y1 Y2 Y3 Y4;
W@1;  Z@1;
MW | M XWITH W;
XW | X XWITH W;
XZ | X XWITH Z;
Y ON M (b1);
Y ON W (b2);
Y ON MW (b3);
Y ON X (cdash);
M ON X (a1);
M ON W (a2);
M ON Z (a3);
M ON XW (a4);
M ON XZ (a5);
MODEL CONSTRAINT:
NEW(LOW_W MED_W HIGH_W LOW_Z MED_Z HIGH_Z ...);
LOW_W = -1; ...
ILOW_LOZ = a1*b1 + a4*b1*LOW_W + a5*b1*LOW_Z + a1*b3*LOW_W + a4*b3*LOW_W*LOW_W + a5*b3*LOW_Z*LOW_W; ...
TLOW_LOZ = ILOW_LOZ + cdash; ...

代码解读11

USEVARIABLES = X1 X2 X3 X4 M1 M2 M3 M4 W1 W2 W3 W4 Z1 Z2 Z3 Z4 Y1 Y2 Y3 Y4;
ANALYSIS:
TYPE = GENERAL RANDOM;
ESTIMATOR = ML;
ALGORITHM = INTEGRATION;
MODEL:
X BY X1 X2 X3 X4;
M BY M1 M2 M3 M4;
W BY W1* W2 W3 W4;
Z BY Z1* Z2 Z3 Z4;
Y BY Y1 Y2 Y3 Y4;
W@1;  Z@1;
MW | M XWITH W;
XW | X XWITH W;
XZ | X XWITH Z;
Y ON M (b1);
Y ON W (b2);
Y ON MW (b3);
Y ON X (cdash);
M ON X (a1);
M ON W (a2);
M ON Z (a3);
M ON XW (a4);
M ON XZ (a5);
MODEL CONSTRAINT:
NEW(LOW_W MED_W HIGH_W LOW_Z MED_Z HIGH_Z ...);
LOW_W = -1; ...
ILOW_LOZ = a1*b1 + a4*b1*LOW_W + a5*b1*LOW_Z + a1*b3*LOW_W + a4*b3*LOW_W*LOW_W + a5*b3*LOW_Z*LOW_W; ...
TLOW_LOZ = ILOW_LOZ + cdash; ...
PLOT(PLOW_LOZ PMEW_LOZ PHIW_LOZ ...);
LOOP(XVAL,-3,3,0.1); ...

代码解读12

USEVARIABLES = X1 X2 X3 X4 M1 M2 M3 M4 W1 W2 W3 W4 Z1 Z2 Z3 Z4 Y1 Y2 Y3 Y4;
ANALYSIS:
TYPE = GENERAL RANDOM;
ESTIMATOR = ML;
ALGORITHM = INTEGRATION;
MODEL:
X BY X1 X2 X3 X4;
M BY M1 M2 M3 M4;
W BY W1* W2 W3 W4;
Z BY Z1* Z2 Z3 Z4;
Y BY Y1 Y2 Y3 Y4;
W@1;  Z@1;
MW | M XWITH W;
XW | X XWITH W;
XZ | X XWITH Z;
Y ON M (b1);
Y ON W (b2);
Y ON MW (b3);
Y ON X (cdash);
M ON X (a1);
M ON W (a2);
M ON Z (a3);
M ON XW (a4);
M ON XZ (a5);
MODEL CONSTRAINT:
NEW(LOW_W MED_W HIGH_W LOW_Z MED_Z HIGH_Z ...);
LOW_W = -1; ...
ILOW_LOZ = a1*b1 + a4*b1*LOW_W + a5*b1*LOW_Z + a1*b3*LOW_W + a4*b3*LOW_W*LOW_W + a5*b3*LOW_Z*LOW_W; ...
TLOW_LOZ = ILOW_LOZ + cdash; ...
PLOT(PLOW_LOZ PMEW_LOZ PHIW_LOZ ...);
LOOP(XVAL,-3,3,0.1); ...
OUTPUT: CINT;

资源汇总

  • 本视频讲义地址: https://mlln.cn/mplus-model-templates/model60latent.html
  • 图书《MPlus中介调节模型》打包下载: 点击下载
  • 图书《MPlus中介调节模型》在线看: 点击查看
  • 视频教程: 点击这里打开视频
  • Mplus 模型模板教程列表: https://mlln.cn/mplus-model-templates
  • 统计咨询: https://wx.zsxq.com/group/88888188828842