Mplus model5latent 模型讲解

来自图书《MPlus中介调节模型》

使用Mplus进行潜变量中介、调节与调节中介模型分析

  • 理论模型
  • 数学模型
  • 数学推导
  • Mplus代码解读

理论模型

数学模型

数学公式1

Y = b0 + b1M + c1'X + c2'W + c3'XW

数学公式2

Y = b0 + b1M + c1'X + c2'W + c3'XW
M = a0 + a1X

数学公式3

Y = b0 + b1M + c1'X + c2'W + c3'XW
M = a0 + a1X
Y = b0 + b1(a0 + a1X) + c1'X + c2'W + c3'XW

数学公式4

Y = b0 + b1M + c1'X + c2'W + c3'XW
M = a0 + a1X
Y = b0 + b1(a0 + a1X) + c1'X + c2'W + c3'XW
Y = b0 + a0b1 + a1b1X + c1'X + c2'W + c3'XW

数学公式5

Y = b0 + b1M + c1'X + c2'W + c3'XW
M = a0 + a1X
Y = b0 + b1(a0 + a1X) + c1'X + c2'W + c3'XW
Y = b0 + a0b1 + a1b1X + c1'X + c2'W + c3'XW
Y = (b0 + a0b1 + c2'W) + (a1b1 + c1' + c3'W)X

数学公式6

Y = b0 + b1M + c1'X + c2'W + c3'XW
M = a0 + a1X
Y = b0 + b1(a0 + a1X) + c1'X + c2'W + c3'XW
Y = b0 + a0b1 + a1b1X + c1'X + c2'W + c3'XW
Y = (b0 + a0b1 + c2'W) + (a1b1 + c1' + c3'W)X
X 对 Y 的间接效应:a1b1

数学公式7

Y = b0 + b1M + c1'X + c2'W + c3'XW
M = a0 + a1X
Y = b0 + b1(a0 + a1X) + c1'X + c2'W + c3'XW
Y = b0 + a0b1 + a1b1X + c1'X + c2'W + c3'XW
Y = (b0 + a0b1 + c2'W) + (a1b1 + c1' + c3'W)X
X 对 Y 的间接效应:a1b1
X 对 Y 的直接效应(在 W 的条件下):c1' + c3'W

代码解读1

USEVARIABLES = X1 X2 X3 X4 M1 M2 M3 M4 W1 W2 W3 W4 Y1 Y2 Y3 Y4;

代码解读2

USEVARIABLES = X1 X2 X3 X4 M1 M2 M3 M4 W1 W2 W3 W4 Y1 Y2 Y3 Y4;
ANALYSIS: 
TYPE = GENERAL RANDOM; 
ESTIMATOR = ML; 
ALGORITHM = INTEGRATION;

代码解读3

USEVARIABLES = X1 X2 X3 X4 M1 M2 M3 M4 W1 W2 W3 W4 Y1 Y2 Y3 Y4;
ANALYSIS: 
TYPE = GENERAL RANDOM; 
ESTIMATOR = ML; 
ALGORITHM = INTEGRATION;
MODEL: 
X BY X1 X2 X3 X4; 
M BY M1 M2 M3 M4; 
W BY W1* W2 W3 W4; 
Y BY Y1 Y2 Y3 Y4;

代码解读4

USEVARIABLES = X1 X2 X3 X4 M1 M2 M3 M4 W1 W2 W3 W4 Y1 Y2 Y3 Y4;
ANALYSIS: 
TYPE = GENERAL RANDOM; 
ESTIMATOR = ML; 
ALGORITHM = INTEGRATION;
MODEL: 
X BY X1 X2 X3 X4; 
M BY M1 M2 M3 M4; 
W BY W1* W2 W3 W4; 
Y BY Y1 Y2 Y3 Y4;
W@1;

代码解读5

USEVARIABLES = X1 X2 X3 X4 M1 M2 M3 M4 W1 W2 W3 W4 Y1 Y2 Y3 Y4;
ANALYSIS: 
TYPE = GENERAL RANDOM; 
ESTIMATOR = ML; 
ALGORITHM = INTEGRATION;
MODEL: 
X BY X1 X2 X3 X4; 
M BY M1 M2 M3 M4; 
W BY W1* W2 W3 W4; 
Y BY Y1 Y2 Y3 Y4;
W@1;
XW | X XWITH W;

代码解读6

USEVARIABLES = X1 X2 X3 X4 M1 M2 M3 M4 W1 W2 W3 W4 Y1 Y2 Y3 Y4;
ANALYSIS: 
TYPE = GENERAL RANDOM; 
ESTIMATOR = ML; 
ALGORITHM = INTEGRATION;
MODEL: 
X BY X1 X2 X3 X4; 
M BY M1 M2 M3 M4; 
W BY W1* W2 W3 W4; 
Y BY Y1 Y2 Y3 Y4;
W@1;
XW | X XWITH W;
Y ON M (b1); 
Y ON X (cdash1); 
Y ON W (cdash2); 
Y ON XW (cdash3); 
M ON X (a1);

代码解读7

USEVARIABLES = X1 X2 X3 X4 M1 M2 M3 M4 W1 W2 W3 W4 Y1 Y2 Y3 Y4;
ANALYSIS: 
TYPE = GENERAL RANDOM; 
ESTIMATOR = ML; 
ALGORITHM = INTEGRATION;
MODEL: 
X BY X1 X2 X3 X4; 
M BY M1 M2 M3 M4; 
W BY W1* W2 W3 W4; 
Y BY Y1 Y2 Y3 Y4;
W@1;
XW | X XWITH W;
Y ON M (b1); 
Y ON X (cdash1); 
Y ON W (cdash2); 
Y ON XW (cdash3); 
M ON X (a1);
MODEL CONSTRAINT: 
NEW(LOW_W MED_W HIGH_W a1b1 DIR_LO DIR_MED DIR_HI TOT_LO TOT_MED TOT_HI); 
LOW_W = -1; 
MED_W = 0; 
HIGH_W = 1;

代码解读8

USEVARIABLES = X1 X2 X3 X4 M1 M2 M3 M4 W1 W2 W3 W4 Y1 Y2 Y3 Y4;
ANALYSIS: 
TYPE = GENERAL RANDOM; 
ESTIMATOR = ML; 
ALGORITHM = INTEGRATION;
MODEL: 
X BY X1 X2 X3 X4; 
M BY M1 M2 M3 M4; 
W BY W1* W2 W3 W4; 
Y BY Y1 Y2 Y3 Y4;
W@1;
XW | X XWITH W;
Y ON M (b1); 
Y ON X (cdash1); 
Y ON W (cdash2); 
Y ON XW (cdash3); 
M ON X (a1);
MODEL CONSTRAINT: 
NEW(LOW_W MED_W HIGH_W a1b1 DIR_LO DIR_MED DIR_HI TOT_LO TOT_MED TOT_HI); 
LOW_W = -1; 
MED_W = 0; 
HIGH_W = 1;
a1b1 = a1*b1; 
DIR_LO = cdash1 + cdash3*LOW_W; 
DIR_MED = cdash1 + cdash3*MED_W; 
DIR_HI = cdash1 + cdash3*HIGH_W; 
TOT_LO = DIR_LO + a1b1; 
TOT_MED = DIR_MED + a1b1; 
TOT_HI = DIR_HI + a1b1;

代码解读9

USEVARIABLES = X1 X2 X3 X4 M1 M2 M3 M4 W1 W2 W3 W4 Y1 Y2 Y3 Y4;
ANALYSIS: 
TYPE = GENERAL RANDOM; 
ESTIMATOR = ML; 
ALGORITHM = INTEGRATION;
MODEL: 
X BY X1 X2 X3 X4; 
M BY M1 M2 M3 M4; 
W BY W1* W2 W3 W4; 
Y BY Y1 Y2 Y3 Y4;
W@1;
XW | X XWITH W;
Y ON M (b1); 
Y ON X (cdash1); 
Y ON W (cdash2); 
Y ON XW (cdash3); 
M ON X (a1);
MODEL CONSTRAINT: 
NEW(LOW_W MED_W HIGH_W a1b1 DIR_LO DIR_MED DIR_HI TOT_LO TOT_MED TOT_HI); 
LOW_W = -1; 
MED_W = 0; 
HIGH_W = 1;
a1b1 = a1*b1; 
DIR_LO = cdash1 + cdash3*LOW_W; 
DIR_MED = cdash1 + cdash3*MED_W; 
DIR_HI = cdash1 + cdash3*HIGH_W; 
TOT_LO = DIR_LO + a1b1; 
TOT_MED = DIR_MED + a1b1; 
TOT_HI = DIR_HI + a1b1;
PLOT(LOMOD MEDMOD HIMOD); 
LOOP(XVAL,-3,3,0.1); 
LOMOD = TOT_LO*XVAL; 
MEDMOD = TOT_MED*XVAL; 
HIMOD = TOT_HI*XVAL; 
PLOT: 
TYPE = plot2;

代码解读10

USEVARIABLES = X1 X2 X3 X4 M1 M2 M3 M4 W1 W2 W3 W4 Y1 Y2 Y3 Y4;
ANALYSIS: 
TYPE = GENERAL RANDOM; 
ESTIMATOR = ML; 
ALGORITHM = INTEGRATION;
MODEL: 
X BY X1 X2 X3 X4; 
M BY M1 M2 M3 M4; 
W BY W1* W2 W3 W4; 
Y BY Y1 Y2 Y3 Y4;
W@1;
XW | X XWITH W;
Y ON M (b1); 
Y ON X (cdash1); 
Y ON W (cdash2); 
Y ON XW (cdash3); 
M ON X (a1);
MODEL CONSTRAINT: 
NEW(LOW_W MED_W HIGH_W a1b1 DIR_LO DIR_MED DIR_HI TOT_LO TOT_MED TOT_HI); 
LOW_W = -1; 
MED_W = 0; 
HIGH_W = 1;
a1b1 = a1*b1; 
DIR_LO = cdash1 + cdash3*LOW_W; 
DIR_MED = cdash1 + cdash3*MED_W; 
DIR_HI = cdash1 + cdash3*HIGH_W; 
TOT_LO = DIR_LO + a1b1; 
TOT_MED = DIR_MED + a1b1; 
TOT_HI = DIR_HI + a1b1;
PLOT(LOMOD MEDMOD HIMOD); 
LOOP(XVAL,-3,3,0.1); 
LOMOD = TOT_LO*XVAL; 
MEDMOD = TOT_MED*XVAL; 
HIMOD = TOT_HI*XVAL; 
PLOT: 
TYPE = plot2;
OUTPUT: 
CINT;

资源汇总

  • 本视频讲义地址: https://mlln.cn/mplus-model-templates/model5latent.html
  • 图书《MPlus中介调节模型》打包下载: 点击下载
  • 图书《MPlus中介调节模型》在线看: 点击查看
  • 视频教程: 点击这里打开视频
  • Mplus 模型模板教程列表: https://mlln.cn/mplus-model-templates
  • 统计咨询: https://wx.zsxq.com/group/88888188828842