Mplus model59latent 模型讲解

来自图书《MPlus中介调节模型》

使用Mplus分析复杂调节中介模型

  • 理论模型
  • 数学模型
  • 数学推导
  • 代码解读

理论模型

数学模型

数学公式1

Y = b0 + b1M + b2MW + c1'X + c2'W + c3'XW
M = a0 + a1X + a2W + a3XW

数学公式2

Y = b0 + b1M + b2MW + c1'X + c2'W + c3'XW
M = a0 + a1X + a2W + a3XW
Y = b0 + b1(a0 + a1X + a2W + a3XW) + b2(a0 + a1X + a2W + a3XW)W + c1'X + c2'W + c3'XW

数学公式3

Y = b0 + b1M + b2MW + c1'X + c2'W + c3'XW
M = a0 + a1X + a2W + a3XW
Y = b0 + b1(a0 + a1X + a2W + a3XW) + b2(a0 + a1X + a2W + a3XW)W + c1'X + c2'W + c3'XW
Y = b0 + a0b1 + a1b1X + a2b1W + a3b1XW + a0b2W + a1b2XW + a2b2W² + a3b2XW² + c1'X + c2'W + c3'XW

数学公式4

Y = b0 + b1M + b2MW + c1'X + c2'W + c3'XW
M = a0 + a1X + a2W + a3XW
Y = b0 + b1(a0 + a1X + a2W + a3XW) + b2(a0 + a1X + a2W + a3XW)W + c1'X + c2'W + c3'XW
Y = b0 + a0b1 + a1b1X + a2b1W + a3b1XW + a0b2W + a1b2XW + a2b2W² + a3b2XW² + c1'X + c2'W + c3'XW
Y = (b0 + a0b1 + a2b1W + a0b2W + a2b2W² + c2'W) + (a1b1 + a3b1W + a1b2W + a3b2XW + c1' + c3'W)X

数学公式5

Y = b0 + b1M + b2MW + c1'X + c2'W + c3'XW
M = a0 + a1X + a2W + a3XW
Y = b0 + b1(a0 + a1X + a2W + a3XW) + b2(a0 + a1X + a2W + a3XW)W + c1'X + c2'W + c3'XW
Y = b0 + a0b1 + a1b1X + a2b1W + a3b1XW + a0b2W + a1b2XW + a2b2W² + a3b2XW² + c1'X + c2'W + c3'XW
Y = (b0 + a0b1 + a2b1W + a0b2W + a2b2W² + c2'W) + (a1b1 + a3b1W + a1b2W + a3b2XW + c1' + c3'W)X
X 对 Y 的间接效应 (依赖于 W):(a1 + a3W)(b1 + b2W)
X 对 Y 的直接效应 (依赖于 W):c1' + c3'W

代码解读1

USEVARIABLES = X1 X2 X3 X4 M1 M2 M3 M4 W1 W2 W3 W4 Y1 Y2 Y3 Y4;

代码解读2

USEVARIABLES = X1 X2 X3 X4 M1 M2 M3 M4 W1 W2 W3 W4 Y1 Y2 Y3 Y4;
ANALYSIS:
TYPE = GENERAL RANDOM;
ESTIMATOR = ML;
ALGORITHM = INTEGRATION;

代码解读3

USEVARIABLES = X1 X2 X3 X4 M1 M2 M3 M4 W1 W2 W3 W4 Y1 Y2 Y3 Y4;
ANALYSIS:
TYPE = GENERAL RANDOM;
ESTIMATOR = ML;
ALGORITHM = INTEGRATION;
MODEL:
X BY X1 X2 X3 X4;
M BY M1 M2 M3 M4;
W BY W1* W2 W3 W4;
Y BY Y1 Y2 Y3 Y4;

代码解读4

USEVARIABLES = X1 X2 X3 X4 M1 M2 M3 M4 W1 W2 W3 W4 Y1 Y2 Y3 Y4;
ANALYSIS:
TYPE = GENERAL RANDOM;
ESTIMATOR = ML;
ALGORITHM = INTEGRATION;
MODEL:
X BY X1 X2 X3 X4;
M BY M1 M2 M3 M4;
W BY W1* W2 W3 W4;
Y BY Y1 Y2 Y3 Y4;
W@1;

代码解读5

USEVARIABLES = X1 X2 X3 X4 M1 M2 M3 M4 W1 W2 W3 W4 Y1 Y2 Y3 Y4;
ANALYSIS:
TYPE = GENERAL RANDOM;
ESTIMATOR = ML;
ALGORITHM = INTEGRATION;
MODEL:
X BY X1 X2 X3 X4;
M BY M1 M2 M3 M4;
W BY W1* W2 W3 W4;
Y BY Y1 Y2 Y3 Y4;
W@1;
MW | M XWITH W;
XW | X XWITH W;

代码解读6

USEVARIABLES = X1 X2 X3 X4 M1 M2 M3 M4 W1 W2 W3 W4 Y1 Y2 Y3 Y4;
ANALYSIS:
TYPE = GENERAL RANDOM;
ESTIMATOR = ML;
ALGORITHM = INTEGRATION;
MODEL:
X BY X1 X2 X3 X4;
M BY M1 M2 M3 M4;
W BY W1* W2 W3 W4;
Y BY Y1 Y2 Y3 Y4;
W@1;
MW | M XWITH W;
XW | X XWITH W;
Y ON M (b1);
Y ON MW (b2);
Y ON X (cdash1);
Y ON W (cdash2);
Y ON XW (cdash3);

代码解读7

USEVARIABLES = X1 X2 X3 X4 M1 M2 M3 M4 W1 W2 W3 W4 Y1 Y2 Y3 Y4;
ANALYSIS:
TYPE = GENERAL RANDOM;
ESTIMATOR = ML;
ALGORITHM = INTEGRATION;
MODEL:
X BY X1 X2 X3 X4;
M BY M1 M2 M3 M4;
W BY W1* W2 W3 W4;
Y BY Y1 Y2 Y3 Y4;
W@1;
MW | M XWITH W;
XW | X XWITH W;
Y ON M (b1);
Y ON MW (b2);
Y ON X (cdash1);
Y ON W (cdash2);
Y ON XW (cdash3);
M ON X (a1);
M ON W (a2);
M ON XW (a3);

代码解读8

USEVARIABLES = X1 X2 X3 X4 M1 M2 M3 M4 W1 W2 W3 W4 Y1 Y2 Y3 Y4;
ANALYSIS:
TYPE = GENERAL RANDOM;
ESTIMATOR = ML;
ALGORITHM = INTEGRATION;
MODEL:
X BY X1 X2 X3 X4;
M BY M1 M2 M3 M4;
W BY W1* W2 W3 W4;
Y BY Y1 Y2 Y3 Y4;
W@1;
MW | M XWITH W;
XW | X XWITH W;
Y ON M (b1);
Y ON MW (b2);
Y ON X (cdash1);
Y ON W (cdash2);
Y ON XW (cdash3);
M ON X (a1);
M ON W (a2);
M ON XW (a3);
MODEL CONSTRAINT:
NEW(LOW_W MED_W HIGH_W ...);
LOW_W = -1;
MED_W = 0;
HIGH_W = 1; ...

代码解读9

USEVARIABLES = X1 X2 X3 X4 M1 M2 M3 M4 W1 W2 W3 W4 Y1 Y2 Y3 Y4;
ANALYSIS:
TYPE = GENERAL RANDOM;
ESTIMATOR = ML;
ALGORITHM = INTEGRATION;
MODEL:
X BY X1 X2 X3 X4;
M BY M1 M2 M3 M4;
W BY W1* W2 W3 W4;
Y BY Y1 Y2 Y3 Y4;
W@1;
MW | M XWITH W;
XW | X XWITH W;
Y ON M (b1);
Y ON MW (b2);
Y ON X (cdash1);
Y ON W (cdash2);
Y ON XW (cdash3);
M ON X (a1);
M ON W (a2);
M ON XW (a3);
MODEL CONSTRAINT:
NEW(LOW_W MED_W HIGH_W ...);
LOW_W = -1;
MED_W = 0;
HIGH_W = 1; ...
IND_LOWW = ...; IND_MEDW = ...; IND_HIW = ...; 
IMM_LOW = ...; IMM_MEDW = ...; IMM_HIW = ...;
DIR_LOWW = ...; DIR_MEDW = ...; DIR_HIW = ...;
TOT_LOWW = ...; TOT_MEDW = ...; TOT_HIW = ...;

代码解读10

USEVARIABLES = X1 X2 X3 X4 M1 M2 M3 M4 W1 W2 W3 W4 Y1 Y2 Y3 Y4;
ANALYSIS:
TYPE = GENERAL RANDOM;
ESTIMATOR = ML;
ALGORITHM = INTEGRATION;
MODEL:
X BY X1 X2 X3 X4;
M BY M1 M2 M3 M4;
W BY W1* W2 W3 W4;
Y BY Y1 Y2 Y3 Y4;
W@1;
MW | M XWITH W;
XW | X XWITH W;
Y ON M (b1);
Y ON MW (b2);
Y ON X (cdash1);
Y ON W (cdash2);
Y ON XW (cdash3);
M ON X (a1);
M ON W (a2);
M ON XW (a3);
MODEL CONSTRAINT:
NEW(LOW_W MED_W HIGH_W ...);
LOW_W = -1;
MED_W = 0;
HIGH_W = 1; ...
IND_LOWW = ...; IND_MEDW = ...; IND_HIW = ...; 
IMM_LOW = ...; IMM_MEDW = ...; IMM_HIW = ...;
DIR_LOWW = ...; DIR_MEDW = ...; DIR_HIW = ...;
TOT_LOWW = ...; TOT_MEDW = ...; TOT_HIW = ...;
PLOT(LOMOD MEDMOD HIMOD);
LOOP(XVAL,-3,3,0.1);
LOMOD = IND_LOWW*XVAL; MEDMOD = IND_MEDW*XVAL; HIMOD = IND_HIW*XVAL;

代码解读11

USEVARIABLES = X1 X2 X3 X4 M1 M2 M3 M4 W1 W2 W3 W4 Y1 Y2 Y3 Y4;
ANALYSIS:
TYPE = GENERAL RANDOM;
ESTIMATOR = ML;
ALGORITHM = INTEGRATION;
MODEL:
X BY X1 X2 X3 X4;
M BY M1 M2 M3 M4;
W BY W1* W2 W3 W4;
Y BY Y1 Y2 Y3 Y4;
W@1;
MW | M XWITH W;
XW | X XWITH W;
Y ON M (b1);
Y ON MW (b2);
Y ON X (cdash1);
Y ON W (cdash2);
Y ON XW (cdash3);
M ON X (a1);
M ON W (a2);
M ON XW (a3);
MODEL CONSTRAINT:
NEW(LOW_W MED_W HIGH_W ...);
LOW_W = -1;
MED_W = 0;
HIGH_W = 1; ...
IND_LOWW = ...; IND_MEDW = ...; IND_HIW = ...; 
IMM_LOW = ...; IMM_MEDW = ...; IMM_HIW = ...;
DIR_LOWW = ...; DIR_MEDW = ...; DIR_HIW = ...;
TOT_LOWW = ...; TOT_MEDW = ...; TOT_HIW = ...;
PLOT(LOMOD MEDMOD HIMOD);
LOOP(XVAL,-3,3,0.1);
LOMOD = IND_LOWW*XVAL; MEDMOD = IND_MEDW*XVAL; HIMOD = IND_HIW*XVAL;
PLOT: TYPE = plot2;
OUTPUT: CINT;

资源汇总

  • 本视频讲义地址: https://mlln.cn/mplus-model-templates/model59latent.html
  • 图书《MPlus中介调节模型》打包下载: 点击下载
  • 图书《MPlus中介调节模型》在线看: 点击查看
  • 视频教程: 点击这里打开视频
  • Mplus 模型模板教程列表: https://mlln.cn/mplus-model-templates
  • 统计咨询: https://wx.zsxq.com/group/88888188828842