Mplus model39latent 模型讲解

来自图书《MPlus中介调节模型》

使用Mplus构建复杂潜变量模型:包含中介、调节和调节中介效应

  • 理论模型
  • 数学模型
  • 数学推导
  • Mplus代码解读

理论模型

数学模型

数学公式1

模型方程式:
Y = b0 + b1M + b2Q + b3MV + b4MQ + b5VQ + b6MVQ + c1'X + c2'V + c3'XV

M = a0 + a1X + a2W + a3XW

数学公式2

模型方程式:
Y = b0 + b1M + b2Q + b3MV + b4MQ + b5VQ + b6MVQ + c1'X + c2'V + c3'XV

M = a0 + a1X + a2W + a3XW
将M的方程式代入Y的方程式:
Y = b0 + b1(a0 + a1X + a2W + a3XW) + b2Q + b3(a0 + a1X + a2W + a3XW)V + b4(a0 + a1X + a2W + a3XW)Q + b5VQ + b6(a0 + a1X + a2W + a3XW)VQ + c1'X + c2'V + c3'XV

数学公式3

模型方程式:
Y = b0 + b1M + b2Q + b3MV + b4MQ + b5VQ + b6MVQ + c1'X + c2'V + c3'XV

M = a0 + a1X + a2W + a3XW
将M的方程式代入Y的方程式:
Y = b0 + b1(a0 + a1X + a2W + a3XW) + b2Q + b3(a0 + a1X + a2W + a3XW)V + b4(a0 + a1X + a2W + a3XW)Q + b5VQ + b6(a0 + a1X + a2W + a3XW)VQ + c1'X + c2'V + c3'XV
展开括号:
Y = b0 + a0b1 + a1b1X + a2b1W + a3b1XW + b2Q + a0b3V + a1b3XV + a2b3WV + a3b3XWV + a0b4Q + a1b4XQ + a2b4WQ + a3b4XWQ + b5VQ + a0b6VQ + a1b6XVQ + a2b6WVQ + a3b6XWVQ + c1'X + c2'V + c3'XV

数学公式4

模型方程式:
Y = b0 + b1M + b2Q + b3MV + b4MQ + b5VQ + b6MVQ + c1'X + c2'V + c3'XV

M = a0 + a1X + a2W + a3XW
将M的方程式代入Y的方程式:
Y = b0 + b1(a0 + a1X + a2W + a3XW) + b2Q + b3(a0 + a1X + a2W + a3XW)V + b4(a0 + a1X + a2W + a3XW)Q + b5VQ + b6(a0 + a1X + a2W + a3XW)VQ + c1'X + c2'V + c3'XV
展开括号:
Y = b0 + a0b1 + a1b1X + a2b1W + a3b1XW + b2Q + a0b3V + a1b3XV + a2b3WV + a3b3XWV + a0b4Q + a1b4XQ + a2b4WQ + a3b4XWQ + b5VQ + a0b6VQ + a1b6XVQ + a2b6WVQ + a3b6XWVQ + c1'X + c2'V + c3'XV
整理成Y = a + bX的形式:
Y = (b0 + a0b1 + a2b1W + b2Q + a0b3V + a2b3WV + a0b4Q + a2b4WQ + b5VQ + a0b6VQ + a2b6WVQ + c2'V) + (a1b1 + a3b1W + a1b3V + a3b3WV + a1b4Q + a3b4WQ + a1b6VQ + a3b6WVQ + c1' + c3'V)X

数学公式5

模型方程式:
Y = b0 + b1M + b2Q + b3MV + b4MQ + b5VQ + b6MVQ + c1'X + c2'V + c3'XV

M = a0 + a1X + a2W + a3XW
将M的方程式代入Y的方程式:
Y = b0 + b1(a0 + a1X + a2W + a3XW) + b2Q + b3(a0 + a1X + a2W + a3XW)V + b4(a0 + a1X + a2W + a3XW)Q + b5VQ + b6(a0 + a1X + a2W + a3XW)VQ + c1'X + c2'V + c3'XV
展开括号:
Y = b0 + a0b1 + a1b1X + a2b1W + a3b1XW + b2Q + a0b3V + a1b3XV + a2b3WV + a3b3XWV + a0b4Q + a1b4XQ + a2b4WQ + a3b4XWQ + b5VQ + a0b6VQ + a1b6XVQ + a2b6WVQ + a3b6XWVQ + c1'X + c2'V + c3'XV
整理成Y = a + bX的形式:
Y = (b0 + a0b1 + a2b1W + b2Q + a0b3V + a2b3WV + a0b4Q + a2b4WQ + b5VQ + a0b6VQ + a2b6WVQ + c2'V) + (a1b1 + a3b1W + a1b3V + a3b3WV + a1b4Q + a3b4WQ + a1b6VQ + a3b6WVQ + c1' + c3'V)X
X对Y的间接效应(在W,V,Q的条件下):
(a1 + a3W)(b1 + b3V + b4Q + b6VQ)

X对Y的直接效应(在V的条件下):
c1' + c3'V

代码解读1

USEVARIABLES = X1 X2 X3 X4 M1 M2 M3 M4
W1 W2 W3 W4 V1 V2 V3 V4 Q1 Q2 Q3 Q4
Y1 Y2 Y3 Y4;

代码解读2

USEVARIABLES = X1 X2 X3 X4 M1 M2 M3 M4
W1 W2 W3 W4 V1 V2 V3 V4 Q1 Q2 Q3 Q4
Y1 Y2 Y3 Y4;
ANALYSIS:
TYPE = GENERAL RANDOM;
ESTIMATOR = ML;
ALGORITHM = INTEGRATION;

代码解读3

USEVARIABLES = X1 X2 X3 X4 M1 M2 M3 M4
W1 W2 W3 W4 V1 V2 V3 V4 Q1 Q2 Q3 Q4
Y1 Y2 Y3 Y4;
ANALYSIS:
TYPE = GENERAL RANDOM;
ESTIMATOR = ML;
ALGORITHM = INTEGRATION;
MODEL:
X BY X1 X2 X3 X4;
M BY M1 M2 M3 M4;
W BY W1* W2 W3 W4;
V BY V1* V2 V3 V4;
Q BY Q1* Q2 Q3 Q4;
Y BY Y1 Y2 Y3 Y4;
W@1; V@1; Q@1;

代码解读4

USEVARIABLES = X1 X2 X3 X4 M1 M2 M3 M4
W1 W2 W3 W4 V1 V2 V3 V4 Q1 Q2 Q3 Q4
Y1 Y2 Y3 Y4;
ANALYSIS:
TYPE = GENERAL RANDOM;
ESTIMATOR = ML;
ALGORITHM = INTEGRATION;
MODEL:
X BY X1 X2 X3 X4;
M BY M1 M2 M3 M4;
W BY W1* W2 W3 W4;
V BY V1* V2 V3 V4;
Q BY Q1* Q2 Q3 Q4;
Y BY Y1 Y2 Y3 Y4;
W@1; V@1; Q@1;
MV | M XWITH V;
MQ | M XWITH Q;
XW | X XWITH W;
XV | X XWITH V;
VQ | V XWITH Q;
MVQ | M XWITH VQ;

代码解读5

USEVARIABLES = X1 X2 X3 X4 M1 M2 M3 M4
W1 W2 W3 W4 V1 V2 V3 V4 Q1 Q2 Q3 Q4
Y1 Y2 Y3 Y4;
ANALYSIS:
TYPE = GENERAL RANDOM;
ESTIMATOR = ML;
ALGORITHM = INTEGRATION;
MODEL:
X BY X1 X2 X3 X4;
M BY M1 M2 M3 M4;
W BY W1* W2 W3 W4;
V BY V1* V2 V3 V4;
Q BY Q1* Q2 Q3 Q4;
Y BY Y1 Y2 Y3 Y4;
W@1; V@1; Q@1;
MV | M XWITH V;
MQ | M XWITH Q;
XW | X XWITH W;
XV | X XWITH V;
VQ | V XWITH Q;
MVQ | M XWITH VQ;
Y ON M (b1);
Y ON Q (b2);
Y ON MV (b3);
Y ON MQ (b4);
Y ON VQ (b5);
Y ON MVQ (b6);
Y ON X (cdash1);
Y ON V (cdash2);
Y ON XV (cdash3);
M ON X (a1);
M ON W (a2);
M ON XW (a3);

代码解读6

USEVARIABLES = X1 X2 X3 X4 M1 M2 M3 M4
W1 W2 W3 W4 V1 V2 V3 V4 Q1 Q2 Q3 Q4
Y1 Y2 Y3 Y4;
ANALYSIS:
TYPE = GENERAL RANDOM;
ESTIMATOR = ML;
ALGORITHM = INTEGRATION;
MODEL:
X BY X1 X2 X3 X4;
M BY M1 M2 M3 M4;
W BY W1* W2 W3 W4;
V BY V1* V2 V3 V4;
Q BY Q1* Q2 Q3 Q4;
Y BY Y1 Y2 Y3 Y4;
W@1; V@1; Q@1;
MV | M XWITH V;
MQ | M XWITH Q;
XW | X XWITH W;
XV | X XWITH V;
VQ | V XWITH Q;
MVQ | M XWITH VQ;
Y ON M (b1);
Y ON Q (b2);
Y ON MV (b3);
Y ON MQ (b4);
Y ON VQ (b5);
Y ON MVQ (b6);
Y ON X (cdash1);
Y ON V (cdash2);
Y ON XV (cdash3);
M ON X (a1);
M ON W (a2);
M ON XW (a3);
MODEL CONSTRAINT:
NEW(LOW_W MED_W HIGH_W LOW_V MED_V HIGH_V LOW_Q MED_Q HIGH_Q ...);
LOW_W = -1; MED_W = 0; HIGH_W = 1; ...
ILWLVLQ = a1*b1 + a3*b1*LOW_W + ...;

代码解读7

USEVARIABLES = X1 X2 X3 X4 M1 M2 M3 M4
W1 W2 W3 W4 V1 V2 V3 V4 Q1 Q2 Q3 Q4
Y1 Y2 Y3 Y4;
ANALYSIS:
TYPE = GENERAL RANDOM;
ESTIMATOR = ML;
ALGORITHM = INTEGRATION;
MODEL:
X BY X1 X2 X3 X4;
M BY M1 M2 M3 M4;
W BY W1* W2 W3 W4;
V BY V1* V2 V3 V4;
Q BY Q1* Q2 Q3 Q4;
Y BY Y1 Y2 Y3 Y4;
W@1; V@1; Q@1;
MV | M XWITH V;
MQ | M XWITH Q;
XW | X XWITH W;
XV | X XWITH V;
VQ | V XWITH Q;
MVQ | M XWITH VQ;
Y ON M (b1);
Y ON Q (b2);
Y ON MV (b3);
Y ON MQ (b4);
Y ON VQ (b5);
Y ON MVQ (b6);
Y ON X (cdash1);
Y ON V (cdash2);
Y ON XV (cdash3);
M ON X (a1);
M ON W (a2);
M ON XW (a3);
MODEL CONSTRAINT:
NEW(LOW_W MED_W HIGH_W LOW_V MED_V HIGH_V LOW_Q MED_Q HIGH_Q ...);
LOW_W = -1; MED_W = 0; HIGH_W = 1; ...
ILWLVLQ = a1*b1 + a3*b1*LOW_W + ...;
DIR_LOWV = cdash1 + cdash3*LOW_V; ...
TLWLVLQ = ...;

代码解读8

USEVARIABLES = X1 X2 X3 X4 M1 M2 M3 M4
W1 W2 W3 W4 V1 V2 V3 V4 Q1 Q2 Q3 Q4
Y1 Y2 Y3 Y4;
ANALYSIS:
TYPE = GENERAL RANDOM;
ESTIMATOR = ML;
ALGORITHM = INTEGRATION;
MODEL:
X BY X1 X2 X3 X4;
M BY M1 M2 M3 M4;
W BY W1* W2 W3 W4;
V BY V1* V2 V3 V4;
Q BY Q1* Q2 Q3 Q4;
Y BY Y1 Y2 Y3 Y4;
W@1; V@1; Q@1;
MV | M XWITH V;
MQ | M XWITH Q;
XW | X XWITH W;
XV | X XWITH V;
VQ | V XWITH Q;
MVQ | M XWITH VQ;
Y ON M (b1);
Y ON Q (b2);
Y ON MV (b3);
Y ON MQ (b4);
Y ON VQ (b5);
Y ON MVQ (b6);
Y ON X (cdash1);
Y ON V (cdash2);
Y ON XV (cdash3);
M ON X (a1);
M ON W (a2);
M ON XW (a3);
MODEL CONSTRAINT:
NEW(LOW_W MED_W HIGH_W LOW_V MED_V HIGH_V LOW_Q MED_Q HIGH_Q ...);
LOW_W = -1; MED_W = 0; HIGH_W = 1; ...
ILWLVLQ = a1*b1 + a3*b1*LOW_W + ...;
DIR_LOWV = cdash1 + cdash3*LOW_V; ...
TLWLVLQ = ...;
PLOT(PLWLVLQ PMWLVLQ PHWLVLQ ...);
LOOP(XVAL,-3,3,0.1);
PLWLVLQ = ILWLVLQ*XVAL; ...

代码解读9

USEVARIABLES = X1 X2 X3 X4 M1 M2 M3 M4
W1 W2 W3 W4 V1 V2 V3 V4 Q1 Q2 Q3 Q4
Y1 Y2 Y3 Y4;
ANALYSIS:
TYPE = GENERAL RANDOM;
ESTIMATOR = ML;
ALGORITHM = INTEGRATION;
MODEL:
X BY X1 X2 X3 X4;
M BY M1 M2 M3 M4;
W BY W1* W2 W3 W4;
V BY V1* V2 V3 V4;
Q BY Q1* Q2 Q3 Q4;
Y BY Y1 Y2 Y3 Y4;
W@1; V@1; Q@1;
MV | M XWITH V;
MQ | M XWITH Q;
XW | X XWITH W;
XV | X XWITH V;
VQ | V XWITH Q;
MVQ | M XWITH VQ;
Y ON M (b1);
Y ON Q (b2);
Y ON MV (b3);
Y ON MQ (b4);
Y ON VQ (b5);
Y ON MVQ (b6);
Y ON X (cdash1);
Y ON V (cdash2);
Y ON XV (cdash3);
M ON X (a1);
M ON W (a2);
M ON XW (a3);
MODEL CONSTRAINT:
NEW(LOW_W MED_W HIGH_W LOW_V MED_V HIGH_V LOW_Q MED_Q HIGH_Q ...);
LOW_W = -1; MED_W = 0; HIGH_W = 1; ...
ILWLVLQ = a1*b1 + a3*b1*LOW_W + ...;
DIR_LOWV = cdash1 + cdash3*LOW_V; ...
TLWLVLQ = ...;
PLOT(PLWLVLQ PMWLVLQ PHWLVLQ ...);
LOOP(XVAL,-3,3,0.1);
PLWLVLQ = ILWLVLQ*XVAL; ...
PLOT: TYPE = plot2;
OUTPUT: CINT;

资源汇总

  • 本视频讲义地址: https://mlln.cn/mplus-model-templates/model39latent.html
  • 图书《MPlus中介调节模型》打包下载: 点击下载
  • 图书《MPlus中介调节模型》在线看: 点击查看
  • 视频教程: 点击这里打开视频
  • Mplus 模型模板教程列表: https://mlln.cn/mplus-model-templates
  • 统计咨询: https://wx.zsxq.com/group/88888188828842