Mplus model2latent 模型讲解

来自图书《MPlus中介调节模型》

使用Mplus构建包含两个调节变量的调节中介模型 (潜变量版本)

  • 理论模型
  • 数学模型
  • 数学推导
  • 代码解读

理论模型

数学模型

数学公式1

Y = b0 + b1X + b2W + b3Z + b4XW + b5XZ

数学公式2

Y = b0 + b1X + b2W + b3Z + b4XW + b5XZ
Y = (b0 + b2W + b3Z) + (b1 + b4W + b5Z)X

数学公式3

Y = b0 + b1X + b2W + b3Z + b4XW + b5XZ
Y = (b0 + b2W + b3Z) + (b1 + b4W + b5Z)X
X 对 Y 的直接效应(在 W 和 Z 条件下): b1 + b4W + b5Z

代码解读1

USEVARIABLES = X1 X2 X3 X4 W1 W2 W3 W4 Z1 Z2 Z3 Z4 Y1 Y2 Y3 Y4;

代码解读2

USEVARIABLES = X1 X2 X3 X4 W1 W2 W3 W4 Z1 Z2 Z3 Z4 Y1 Y2 Y3 Y4;
ANALYSIS:
TYPE = GENERAL RANDOM;
ESTIMATOR = ML;
ALGORITHM = INTEGRATION;

代码解读3

USEVARIABLES = X1 X2 X3 X4 W1 W2 W3 W4 Z1 Z2 Z3 Z4 Y1 Y2 Y3 Y4;
ANALYSIS:
TYPE = GENERAL RANDOM;
ESTIMATOR = ML;
ALGORITHM = INTEGRATION;
MODEL:
X BY X1 X2 X3 X4;
W BY W1* W2 W3 W4;
Z BY Z1* Z2 Z3 Z4;
Y BY Y1 Y2 Y3 Y4;

代码解读4

USEVARIABLES = X1 X2 X3 X4 W1 W2 W3 W4 Z1 Z2 Z3 Z4 Y1 Y2 Y3 Y4;
ANALYSIS:
TYPE = GENERAL RANDOM;
ESTIMATOR = ML;
ALGORITHM = INTEGRATION;
MODEL:
X BY X1 X2 X3 X4;
W BY W1* W2 W3 W4;
Z BY Z1* Z2 Z3 Z4;
Y BY Y1 Y2 Y3 Y4;
W@1; Z@1;

代码解读5

USEVARIABLES = X1 X2 X3 X4 W1 W2 W3 W4 Z1 Z2 Z3 Z4 Y1 Y2 Y3 Y4;
ANALYSIS:
TYPE = GENERAL RANDOM;
ESTIMATOR = ML;
ALGORITHM = INTEGRATION;
MODEL:
X BY X1 X2 X3 X4;
W BY W1* W2 W3 W4;
Z BY Z1* Z2 Z3 Z4;
Y BY Y1 Y2 Y3 Y4;
W@1; Z@1;
XW | X XWITH W;
XZ | X XWITH Z;

代码解读6

USEVARIABLES = X1 X2 X3 X4 W1 W2 W3 W4 Z1 Z2 Z3 Z4 Y1 Y2 Y3 Y4;
ANALYSIS:
TYPE = GENERAL RANDOM;
ESTIMATOR = ML;
ALGORITHM = INTEGRATION;
MODEL:
X BY X1 X2 X3 X4;
W BY W1* W2 W3 W4;
Z BY Z1* Z2 Z3 Z4;
Y BY Y1 Y2 Y3 Y4;
W@1; Z@1;
XW | X XWITH W;
XZ | X XWITH Z;
Y ON X (b1);
Y ON W (b2);
Y ON Z (b3);
Y ON XW (b4);
Y ON XZ (b5);

代码解读7

USEVARIABLES = X1 X2 X3 X4 W1 W2 W3 W4 Z1 Z2 Z3 Z4 Y1 Y2 Y3 Y4;
ANALYSIS:
TYPE = GENERAL RANDOM;
ESTIMATOR = ML;
ALGORITHM = INTEGRATION;
MODEL:
X BY X1 X2 X3 X4;
W BY W1* W2 W3 W4;
Z BY Z1* Z2 Z3 Z4;
Y BY Y1 Y2 Y3 Y4;
W@1; Z@1;
XW | X XWITH W;
XZ | X XWITH Z;
Y ON X (b1);
Y ON W (b2);
Y ON Z (b3);
Y ON XW (b4);
Y ON XZ (b5);
MODEL CONSTRAINT:
NEW(LOW_W MED_W HIGH_W LOW_Z MED_Z HIGH_Z LOW_LOZ ... HIW_HIZ);...
LOW_W = -1; ... HIGH_Z = 1;
LOW_LOZ = b1 + b4*LOW_W + b5*LOW_Z; ... HIW_HIZ = b1 + b4*HIGH_W + b5*HIGH_Z;

代码解读8

USEVARIABLES = X1 X2 X3 X4 W1 W2 W3 W4 Z1 Z2 Z3 Z4 Y1 Y2 Y3 Y4;
ANALYSIS:
TYPE = GENERAL RANDOM;
ESTIMATOR = ML;
ALGORITHM = INTEGRATION;
MODEL:
X BY X1 X2 X3 X4;
W BY W1* W2 W3 W4;
Z BY Z1* Z2 Z3 Z4;
Y BY Y1 Y2 Y3 Y4;
W@1; Z@1;
XW | X XWITH W;
XZ | X XWITH Z;
Y ON X (b1);
Y ON W (b2);
Y ON Z (b3);
Y ON XW (b4);
Y ON XZ (b5);
MODEL CONSTRAINT:
NEW(LOW_W MED_W HIGH_W LOW_Z MED_Z HIGH_Z LOW_LOZ ... HIW_HIZ);...
LOW_W = -1; ... HIGH_Z = 1;
LOW_LOZ = b1 + b4*LOW_W + b5*LOW_Z; ... HIW_HIZ = b1 + b4*HIGH_W + b5*HIGH_Z;
PLOT(...);
LOOP(XVAL,-3,3,0.1);...
PLOW_LOZ = LOW_LOZ*XVAL; ... PHIW_HIZ = HIW_HIZ*XVAL;

代码解读9

USEVARIABLES = X1 X2 X3 X4 W1 W2 W3 W4 Z1 Z2 Z3 Z4 Y1 Y2 Y3 Y4;
ANALYSIS:
TYPE = GENERAL RANDOM;
ESTIMATOR = ML;
ALGORITHM = INTEGRATION;
MODEL:
X BY X1 X2 X3 X4;
W BY W1* W2 W3 W4;
Z BY Z1* Z2 Z3 Z4;
Y BY Y1 Y2 Y3 Y4;
W@1; Z@1;
XW | X XWITH W;
XZ | X XWITH Z;
Y ON X (b1);
Y ON W (b2);
Y ON Z (b3);
Y ON XW (b4);
Y ON XZ (b5);
MODEL CONSTRAINT:
NEW(LOW_W MED_W HIGH_W LOW_Z MED_Z HIGH_Z LOW_LOZ ... HIW_HIZ);...
LOW_W = -1; ... HIGH_Z = 1;
LOW_LOZ = b1 + b4*LOW_W + b5*LOW_Z; ... HIW_HIZ = b1 + b4*HIGH_W + b5*HIGH_Z;
PLOT(...);
LOOP(XVAL,-3,3,0.1);...
PLOW_LOZ = LOW_LOZ*XVAL; ... PHIW_HIZ = HIW_HIZ*XVAL;
OUTPUT: STAND CINT;

资源汇总

  • 本视频讲义地址: https://mlln.cn/mplus-model-templates/model2latent.html
  • 图书《MPlus中介调节模型》打包下载: 点击下载
  • 图书《MPlus中介调节模型》在线看: 点击查看
  • 视频教程: 点击这里打开视频
  • Mplus 模型模板教程列表: https://mlln.cn/mplus-model-templates
  • 统计咨询: https://wx.zsxq.com/group/88888188828842