Mplus model28latent 模型讲解

来自图书《MPlus中介调节模型》

Mplus复杂调节中介模型构建与分析教程

  • 理论模型
  • 数学模型
  • 数学推导
  • Mplus代码解读

理论模型

数学模型

数学公式1

Y = b0 + b1M + b2MV + c1'X + c2'V + c3'XV

数学公式2

Y = b0 + b1M + b2MV + c1'X + c2'V + c3'XV
M = a0 + a1X + a2W + a3XW

数学公式3

Y = b0 + b1M + b2MV + c1'X + c2'V + c3'XV
M = a0 + a1X + a2W + a3XW
Y = b0 + b1(a0 + a1X + a2W + a3XW) + b2(a0 + a1X + a2W + a3XW)V + c1'X + c2'V + c3'XV

数学公式4

Y = b0 + b1M + b2MV + c1'X + c2'V + c3'XV
M = a0 + a1X + a2W + a3XW
Y = b0 + b1(a0 + a1X + a2W + a3XW) + b2(a0 + a1X + a2W + a3XW)V + c1'X + c2'V + c3'XV
Y = b0 + a0b1 + a1b1X + a2b1W + a3b1XW + a0b2V + a1b2XV + a2b2WV + a3b2XWV + c1'X + c2'V + c3'XV

数学公式5

Y = b0 + b1M + b2MV + c1'X + c2'V + c3'XV
M = a0 + a1X + a2W + a3XW
Y = b0 + b1(a0 + a1X + a2W + a3XW) + b2(a0 + a1X + a2W + a3XW)V + c1'X + c2'V + c3'XV
Y = b0 + a0b1 + a1b1X + a2b1W + a3b1XW + a0b2V + a1b2XV + a2b2WV + a3b2XWV + c1'X + c2'V + c3'XV
Y = (b0 + a0b1 + a2b1W + a0b2V + a2b2WV + c2'V) + (a1b1 + a3b1W + a1b2V + a3b2WV + c1' + c3'V)X

数学公式6

Y = b0 + b1M + b2MV + c1'X + c2'V + c3'XV
M = a0 + a1X + a2W + a3XW
Y = b0 + b1(a0 + a1X + a2W + a3XW) + b2(a0 + a1X + a2W + a3XW)V + c1'X + c2'V + c3'XV
Y = b0 + a0b1 + a1b1X + a2b1W + a3b1XW + a0b2V + a1b2XV + a2b2WV + a3b2XWV + c1'X + c2'V + c3'XV
Y = (b0 + a0b1 + a2b1W + a0b2V + a2b2WV + c2'V) + (a1b1 + a3b1W + a1b2V + a3b2WV + c1' + c3'V)X
条件间接效应 (X 对 Y 的间接效应,取决于 W 和 V):
a1b1 + a3b1W + a1b2V + a3b2WV = (a1 + a3W)(b1 + b2V)

数学公式7

Y = b0 + b1M + b2MV + c1'X + c2'V + c3'XV
M = a0 + a1X + a2W + a3XW
Y = b0 + b1(a0 + a1X + a2W + a3XW) + b2(a0 + a1X + a2W + a3XW)V + c1'X + c2'V + c3'XV
Y = b0 + a0b1 + a1b1X + a2b1W + a3b1XW + a0b2V + a1b2XV + a2b2WV + a3b2XWV + c1'X + c2'V + c3'XV
Y = (b0 + a0b1 + a2b1W + a0b2V + a2b2WV + c2'V) + (a1b1 + a3b1W + a1b2V + a3b2WV + c1' + c3'V)X
条件间接效应 (X 对 Y 的间接效应,取决于 W 和 V):
a1b1 + a3b1W + a1b2V + a3b2WV = (a1 + a3W)(b1 + b2V)
条件直接效应 (X 对 Y 的直接效应,取决于 V):
c1' + c3'V

代码解读1

USEVARIABLES = X1 X2 X3 X4 M1 M2 M3 M4 W1 W2 W3 W4 V1 V2 V3 V4 Y1 Y2 Y3 Y4;

代码解读2

USEVARIABLES = X1 X2 X3 X4 M1 M2 M3 M4 W1 W2 W3 W4 V1 V2 V3 V4 Y1 Y2 Y3 Y4;
ANALYSIS:
TYPE = GENERAL RANDOM;
ESTIMATOR = ML;
ALGORITHM = INTEGRATION;

代码解读3

USEVARIABLES = X1 X2 X3 X4 M1 M2 M3 M4 W1 W2 W3 W4 V1 V2 V3 V4 Y1 Y2 Y3 Y4;
ANALYSIS:
TYPE = GENERAL RANDOM;
ESTIMATOR = ML;
ALGORITHM = INTEGRATION;
MODEL:
X BY X1 X2 X3 X4;
M BY M1 M2 M3 M4;
W BY W1* W2 W3 W4;
V BY V1* V2 V3 V4;
Y BY Y1 Y2 Y3 Y4;

代码解读4

USEVARIABLES = X1 X2 X3 X4 M1 M2 M3 M4 W1 W2 W3 W4 V1 V2 V3 V4 Y1 Y2 Y3 Y4;
ANALYSIS:
TYPE = GENERAL RANDOM;
ESTIMATOR = ML;
ALGORITHM = INTEGRATION;
MODEL:
X BY X1 X2 X3 X4;
M BY M1 M2 M3 M4;
W BY W1* W2 W3 W4;
V BY V1* V2 V3 V4;
Y BY Y1 Y2 Y3 Y4;
W@1;  V@1;

代码解读5

USEVARIABLES = X1 X2 X3 X4 M1 M2 M3 M4 W1 W2 W3 W4 V1 V2 V3 V4 Y1 Y2 Y3 Y4;
ANALYSIS:
TYPE = GENERAL RANDOM;
ESTIMATOR = ML;
ALGORITHM = INTEGRATION;
MODEL:
X BY X1 X2 X3 X4;
M BY M1 M2 M3 M4;
W BY W1* W2 W3 W4;
V BY V1* V2 V3 V4;
Y BY Y1 Y2 Y3 Y4;
W@1;  V@1;
MV | M XWITH V;
XW | X XWITH W;
XV | X XWITH V;

代码解读6

USEVARIABLES = X1 X2 X3 X4 M1 M2 M3 M4 W1 W2 W3 W4 V1 V2 V3 V4 Y1 Y2 Y3 Y4;
ANALYSIS:
TYPE = GENERAL RANDOM;
ESTIMATOR = ML;
ALGORITHM = INTEGRATION;
MODEL:
X BY X1 X2 X3 X4;
M BY M1 M2 M3 M4;
W BY W1* W2 W3 W4;
V BY V1* V2 V3 V4;
Y BY Y1 Y2 Y3 Y4;
W@1;  V@1;
MV | M XWITH V;
XW | X XWITH W;
XV | X XWITH V;
Y ON M (b1);
Y ON MV (b2);
Y ON X (cdash1);
Y ON V (cdash2);
Y ON XV (cdash3);

代码解读7

USEVARIABLES = X1 X2 X3 X4 M1 M2 M3 M4 W1 W2 W3 W4 V1 V2 V3 V4 Y1 Y2 Y3 Y4;
ANALYSIS:
TYPE = GENERAL RANDOM;
ESTIMATOR = ML;
ALGORITHM = INTEGRATION;
MODEL:
X BY X1 X2 X3 X4;
M BY M1 M2 M3 M4;
W BY W1* W2 W3 W4;
V BY V1* V2 V3 V4;
Y BY Y1 Y2 Y3 Y4;
W@1;  V@1;
MV | M XWITH V;
XW | X XWITH W;
XV | X XWITH V;
Y ON M (b1);
Y ON MV (b2);
Y ON X (cdash1);
Y ON V (cdash2);
Y ON XV (cdash3);
M ON X (a1);
M ON W (a2);
M ON XW (a3);

代码解读8

USEVARIABLES = X1 X2 X3 X4 M1 M2 M3 M4 W1 W2 W3 W4 V1 V2 V3 V4 Y1 Y2 Y3 Y4;
ANALYSIS:
TYPE = GENERAL RANDOM;
ESTIMATOR = ML;
ALGORITHM = INTEGRATION;
MODEL:
X BY X1 X2 X3 X4;
M BY M1 M2 M3 M4;
W BY W1* W2 W3 W4;
V BY V1* V2 V3 V4;
Y BY Y1 Y2 Y3 Y4;
W@1;  V@1;
MV | M XWITH V;
XW | X XWITH W;
XV | X XWITH V;
Y ON M (b1);
Y ON MV (b2);
Y ON X (cdash1);
Y ON V (cdash2);
Y ON XV (cdash3);
M ON X (a1);
M ON W (a2);
M ON XW (a3);
MODEL CONSTRAINT:
NEW(LOW_W MED_W HIGH_W LOW_V MED_V HIGH_V ...);
LOW_W = -1; ... HIGH_V = 1; ...

代码解读9

USEVARIABLES = X1 X2 X3 X4 M1 M2 M3 M4 W1 W2 W3 W4 V1 V2 V3 V4 Y1 Y2 Y3 Y4;
ANALYSIS:
TYPE = GENERAL RANDOM;
ESTIMATOR = ML;
ALGORITHM = INTEGRATION;
MODEL:
X BY X1 X2 X3 X4;
M BY M1 M2 M3 M4;
W BY W1* W2 W3 W4;
V BY V1* V2 V3 V4;
Y BY Y1 Y2 Y3 Y4;
W@1;  V@1;
MV | M XWITH V;
XW | X XWITH W;
XV | X XWITH V;
Y ON M (b1);
Y ON MV (b2);
Y ON X (cdash1);
Y ON V (cdash2);
Y ON XV (cdash3);
M ON X (a1);
M ON W (a2);
M ON XW (a3);
MODEL CONSTRAINT:
NEW(LOW_W MED_W HIGH_W LOW_V MED_V HIGH_V ...);
LOW_W = -1; ... HIGH_V = 1; ...
ILOW_LOV = a1*b1 + a3*b1*LOW_W + a1*b2*LOW_V + a3*b2*LOW_W*LOW_V; ... IHIW_HIV = ...;

代码解读10

USEVARIABLES = X1 X2 X3 X4 M1 M2 M3 M4 W1 W2 W3 W4 V1 V2 V3 V4 Y1 Y2 Y3 Y4;
ANALYSIS:
TYPE = GENERAL RANDOM;
ESTIMATOR = ML;
ALGORITHM = INTEGRATION;
MODEL:
X BY X1 X2 X3 X4;
M BY M1 M2 M3 M4;
W BY W1* W2 W3 W4;
V BY V1* V2 V3 V4;
Y BY Y1 Y2 Y3 Y4;
W@1;  V@1;
MV | M XWITH V;
XW | X XWITH W;
XV | X XWITH V;
Y ON M (b1);
Y ON MV (b2);
Y ON X (cdash1);
Y ON V (cdash2);
Y ON XV (cdash3);
M ON X (a1);
M ON W (a2);
M ON XW (a3);
MODEL CONSTRAINT:
NEW(LOW_W MED_W HIGH_W LOW_V MED_V HIGH_V ...);
LOW_W = -1; ... HIGH_V = 1; ...
ILOW_LOV = a1*b1 + a3*b1*LOW_W + a1*b2*LOW_V + a3*b2*LOW_W*LOW_V; ... IHIW_HIV = ...;
DIR_LOWV = cdash1 + cdash3*LOW_V; ... DIR_HIV = ...;
TLOW_LOV = ILOW_LOV + DIR_LOWV; ... THIW_HIV = ...;

代码解读11

USEVARIABLES = X1 X2 X3 X4 M1 M2 M3 M4 W1 W2 W3 W4 V1 V2 V3 V4 Y1 Y2 Y3 Y4;
ANALYSIS:
TYPE = GENERAL RANDOM;
ESTIMATOR = ML;
ALGORITHM = INTEGRATION;
MODEL:
X BY X1 X2 X3 X4;
M BY M1 M2 M3 M4;
W BY W1* W2 W3 W4;
V BY V1* V2 V3 V4;
Y BY Y1 Y2 Y3 Y4;
W@1;  V@1;
MV | M XWITH V;
XW | X XWITH W;
XV | X XWITH V;
Y ON M (b1);
Y ON MV (b2);
Y ON X (cdash1);
Y ON V (cdash2);
Y ON XV (cdash3);
M ON X (a1);
M ON W (a2);
M ON XW (a3);
MODEL CONSTRAINT:
NEW(LOW_W MED_W HIGH_W LOW_V MED_V HIGH_V ...);
LOW_W = -1; ... HIGH_V = 1; ...
ILOW_LOV = a1*b1 + a3*b1*LOW_W + a1*b2*LOW_V + a3*b2*LOW_W*LOW_V; ... IHIW_HIV = ...;
DIR_LOWV = cdash1 + cdash3*LOW_V; ... DIR_HIV = ...;
TLOW_LOV = ILOW_LOV + DIR_LOWV; ... THIW_HIV = ...;
PLOT(...);
LOOP(XVAL,-3,3,0.1);
PLOW_LOV = ILOW_LOV*XVAL; ... PHIW_HIV = IHIW_HIV*XVAL;

代码解读12

USEVARIABLES = X1 X2 X3 X4 M1 M2 M3 M4 W1 W2 W3 W4 V1 V2 V3 V4 Y1 Y2 Y3 Y4;
ANALYSIS:
TYPE = GENERAL RANDOM;
ESTIMATOR = ML;
ALGORITHM = INTEGRATION;
MODEL:
X BY X1 X2 X3 X4;
M BY M1 M2 M3 M4;
W BY W1* W2 W3 W4;
V BY V1* V2 V3 V4;
Y BY Y1 Y2 Y3 Y4;
W@1;  V@1;
MV | M XWITH V;
XW | X XWITH W;
XV | X XWITH V;
Y ON M (b1);
Y ON MV (b2);
Y ON X (cdash1);
Y ON V (cdash2);
Y ON XV (cdash3);
M ON X (a1);
M ON W (a2);
M ON XW (a3);
MODEL CONSTRAINT:
NEW(LOW_W MED_W HIGH_W LOW_V MED_V HIGH_V ...);
LOW_W = -1; ... HIGH_V = 1; ...
ILOW_LOV = a1*b1 + a3*b1*LOW_W + a1*b2*LOW_V + a3*b2*LOW_W*LOW_V; ... IHIW_HIV = ...;
DIR_LOWV = cdash1 + cdash3*LOW_V; ... DIR_HIV = ...;
TLOW_LOV = ILOW_LOV + DIR_LOWV; ... THIW_HIV = ...;
PLOT(...);
LOOP(XVAL,-3,3,0.1);
PLOW_LOV = ILOW_LOV*XVAL; ... PHIW_HIV = IHIW_HIV*XVAL;
PLOT: TYPE = plot2;
OUTPUT: CINT;

资源汇总

  • 本视频讲义地址: https://mlln.cn/mplus-model-templates/model28latent.html
  • 图书《MPlus中介调节模型》打包下载: 点击下载
  • 图书《MPlus中介调节模型》在线看: 点击查看
  • 视频教程: 点击这里打开视频
  • Mplus 模型模板教程列表: https://mlln.cn/mplus-model-templates
  • 统计咨询: https://wx.zsxq.com/group/88888188828842