来自图书《MPlus中介调节模型》
Y = b0 + b1M + b2MV + c1'X + c2'V + c3'XV
M = a0 + a1X + a2W + a3XW
Y = b0 + b1(a0 + a1X + a2W + a3XW) + b2(a0 + a1X + a2W + a3XW)V + c1'X + c2'V + c3'XV
Y = b0 + a0b1 + a1b1X + a2b1W + a3b1XW + a0b2V + a1b2XV + a2b2WV + a3b2XWV + c1'X + c2'V + c3'XV
Y = (b0 + a0b1 + a2b1W + a0b2V + a2b2WV + c2'V) + (a1b1 + a3b1W + a1b2V + a3b2WV + c1' + c3'V)X
Y = b0 + b1M + b2MV + c1'X + c2'V + c3'XV
M = a0 + a1X + a2W + a3XW
Y = b0 + b1(a0 + a1X + a2W + a3XW) + b2(a0 + a1X + a2W + a3XW)V + c1'X + c2'V + c3'XV
Y = b0 + a0b1 + a1b1X + a2b1W + a3b1XW + a0b2V + a1b2XV + a2b2WV + a3b2XWV + c1'X + c2'V + c3'XV
Y = (b0 + a0b1 + a2b1W + a0b2V + a2b2WV + c2'V) + (a1b1 + a3b1W + a1b2V + a3b2WV + c1' + c3'V)X
条件间接效应 (X 对 Y 的间接效应,取决于 W 和 V):
a1b1 + a3b1W + a1b2V + a3b2WV = (a1 + a3W)(b1 + b2V)
Y = b0 + b1M + b2MV + c1'X + c2'V + c3'XV
M = a0 + a1X + a2W + a3XW
Y = b0 + b1(a0 + a1X + a2W + a3XW) + b2(a0 + a1X + a2W + a3XW)V + c1'X + c2'V + c3'XV
Y = b0 + a0b1 + a1b1X + a2b1W + a3b1XW + a0b2V + a1b2XV + a2b2WV + a3b2XWV + c1'X + c2'V + c3'XV
Y = (b0 + a0b1 + a2b1W + a0b2V + a2b2WV + c2'V) + (a1b1 + a3b1W + a1b2V + a3b2WV + c1' + c3'V)X
条件间接效应 (X 对 Y 的间接效应,取决于 W 和 V):
a1b1 + a3b1W + a1b2V + a3b2WV = (a1 + a3W)(b1 + b2V)
条件直接效应 (X 对 Y 的直接效应,取决于 V):
c1' + c3'V
USEVARIABLES = X1 X2 X3 X4 M1 M2 M3 M4 W1 W2 W3 W4 V1 V2 V3 V4 Y1 Y2 Y3 Y4;
ANALYSIS:
TYPE = GENERAL RANDOM;
ESTIMATOR = ML;
ALGORITHM = INTEGRATION;
MODEL:
X BY X1 X2 X3 X4;
M BY M1 M2 M3 M4;
W BY W1* W2 W3 W4;
V BY V1* V2 V3 V4;
Y BY Y1 Y2 Y3 Y4;
W@1; V@1;
MV | M XWITH V;
XW | X XWITH W;
XV | X XWITH V;
USEVARIABLES = X1 X2 X3 X4 M1 M2 M3 M4 W1 W2 W3 W4 V1 V2 V3 V4 Y1 Y2 Y3 Y4;
ANALYSIS:
TYPE = GENERAL RANDOM;
ESTIMATOR = ML;
ALGORITHM = INTEGRATION;
MODEL:
X BY X1 X2 X3 X4;
M BY M1 M2 M3 M4;
W BY W1* W2 W3 W4;
V BY V1* V2 V3 V4;
Y BY Y1 Y2 Y3 Y4;
W@1; V@1;
MV | M XWITH V;
XW | X XWITH W;
XV | X XWITH V;
Y ON M (b1);
Y ON MV (b2);
Y ON X (cdash1);
Y ON V (cdash2);
Y ON XV (cdash3);
USEVARIABLES = X1 X2 X3 X4 M1 M2 M3 M4 W1 W2 W3 W4 V1 V2 V3 V4 Y1 Y2 Y3 Y4;
ANALYSIS:
TYPE = GENERAL RANDOM;
ESTIMATOR = ML;
ALGORITHM = INTEGRATION;
MODEL:
X BY X1 X2 X3 X4;
M BY M1 M2 M3 M4;
W BY W1* W2 W3 W4;
V BY V1* V2 V3 V4;
Y BY Y1 Y2 Y3 Y4;
W@1; V@1;
MV | M XWITH V;
XW | X XWITH W;
XV | X XWITH V;
Y ON M (b1);
Y ON MV (b2);
Y ON X (cdash1);
Y ON V (cdash2);
Y ON XV (cdash3);
M ON X (a1);
M ON W (a2);
M ON XW (a3);
USEVARIABLES = X1 X2 X3 X4 M1 M2 M3 M4 W1 W2 W3 W4 V1 V2 V3 V4 Y1 Y2 Y3 Y4;
ANALYSIS:
TYPE = GENERAL RANDOM;
ESTIMATOR = ML;
ALGORITHM = INTEGRATION;
MODEL:
X BY X1 X2 X3 X4;
M BY M1 M2 M3 M4;
W BY W1* W2 W3 W4;
V BY V1* V2 V3 V4;
Y BY Y1 Y2 Y3 Y4;
W@1; V@1;
MV | M XWITH V;
XW | X XWITH W;
XV | X XWITH V;
Y ON M (b1);
Y ON MV (b2);
Y ON X (cdash1);
Y ON V (cdash2);
Y ON XV (cdash3);
M ON X (a1);
M ON W (a2);
M ON XW (a3);
MODEL CONSTRAINT:
NEW(LOW_W MED_W HIGH_W LOW_V MED_V HIGH_V ...);
LOW_W = -1; ... HIGH_V = 1; ...
USEVARIABLES = X1 X2 X3 X4 M1 M2 M3 M4 W1 W2 W3 W4 V1 V2 V3 V4 Y1 Y2 Y3 Y4;
ANALYSIS:
TYPE = GENERAL RANDOM;
ESTIMATOR = ML;
ALGORITHM = INTEGRATION;
MODEL:
X BY X1 X2 X3 X4;
M BY M1 M2 M3 M4;
W BY W1* W2 W3 W4;
V BY V1* V2 V3 V4;
Y BY Y1 Y2 Y3 Y4;
W@1; V@1;
MV | M XWITH V;
XW | X XWITH W;
XV | X XWITH V;
Y ON M (b1);
Y ON MV (b2);
Y ON X (cdash1);
Y ON V (cdash2);
Y ON XV (cdash3);
M ON X (a1);
M ON W (a2);
M ON XW (a3);
MODEL CONSTRAINT:
NEW(LOW_W MED_W HIGH_W LOW_V MED_V HIGH_V ...);
LOW_W = -1; ... HIGH_V = 1; ...
ILOW_LOV = a1*b1 + a3*b1*LOW_W + a1*b2*LOW_V + a3*b2*LOW_W*LOW_V; ... IHIW_HIV = ...;
USEVARIABLES = X1 X2 X3 X4 M1 M2 M3 M4 W1 W2 W3 W4 V1 V2 V3 V4 Y1 Y2 Y3 Y4;
ANALYSIS:
TYPE = GENERAL RANDOM;
ESTIMATOR = ML;
ALGORITHM = INTEGRATION;
MODEL:
X BY X1 X2 X3 X4;
M BY M1 M2 M3 M4;
W BY W1* W2 W3 W4;
V BY V1* V2 V3 V4;
Y BY Y1 Y2 Y3 Y4;
W@1; V@1;
MV | M XWITH V;
XW | X XWITH W;
XV | X XWITH V;
Y ON M (b1);
Y ON MV (b2);
Y ON X (cdash1);
Y ON V (cdash2);
Y ON XV (cdash3);
M ON X (a1);
M ON W (a2);
M ON XW (a3);
MODEL CONSTRAINT:
NEW(LOW_W MED_W HIGH_W LOW_V MED_V HIGH_V ...);
LOW_W = -1; ... HIGH_V = 1; ...
ILOW_LOV = a1*b1 + a3*b1*LOW_W + a1*b2*LOW_V + a3*b2*LOW_W*LOW_V; ... IHIW_HIV = ...;
DIR_LOWV = cdash1 + cdash3*LOW_V; ... DIR_HIV = ...;
TLOW_LOV = ILOW_LOV + DIR_LOWV; ... THIW_HIV = ...;
USEVARIABLES = X1 X2 X3 X4 M1 M2 M3 M4 W1 W2 W3 W4 V1 V2 V3 V4 Y1 Y2 Y3 Y4;
ANALYSIS:
TYPE = GENERAL RANDOM;
ESTIMATOR = ML;
ALGORITHM = INTEGRATION;
MODEL:
X BY X1 X2 X3 X4;
M BY M1 M2 M3 M4;
W BY W1* W2 W3 W4;
V BY V1* V2 V3 V4;
Y BY Y1 Y2 Y3 Y4;
W@1; V@1;
MV | M XWITH V;
XW | X XWITH W;
XV | X XWITH V;
Y ON M (b1);
Y ON MV (b2);
Y ON X (cdash1);
Y ON V (cdash2);
Y ON XV (cdash3);
M ON X (a1);
M ON W (a2);
M ON XW (a3);
MODEL CONSTRAINT:
NEW(LOW_W MED_W HIGH_W LOW_V MED_V HIGH_V ...);
LOW_W = -1; ... HIGH_V = 1; ...
ILOW_LOV = a1*b1 + a3*b1*LOW_W + a1*b2*LOW_V + a3*b2*LOW_W*LOW_V; ... IHIW_HIV = ...;
DIR_LOWV = cdash1 + cdash3*LOW_V; ... DIR_HIV = ...;
TLOW_LOV = ILOW_LOV + DIR_LOWV; ... THIW_HIV = ...;
PLOT(...);
LOOP(XVAL,-3,3,0.1);
PLOW_LOV = ILOW_LOV*XVAL; ... PHIW_HIV = IHIW_HIV*XVAL;
USEVARIABLES = X1 X2 X3 X4 M1 M2 M3 M4 W1 W2 W3 W4 V1 V2 V3 V4 Y1 Y2 Y3 Y4;
ANALYSIS:
TYPE = GENERAL RANDOM;
ESTIMATOR = ML;
ALGORITHM = INTEGRATION;
MODEL:
X BY X1 X2 X3 X4;
M BY M1 M2 M3 M4;
W BY W1* W2 W3 W4;
V BY V1* V2 V3 V4;
Y BY Y1 Y2 Y3 Y4;
W@1; V@1;
MV | M XWITH V;
XW | X XWITH W;
XV | X XWITH V;
Y ON M (b1);
Y ON MV (b2);
Y ON X (cdash1);
Y ON V (cdash2);
Y ON XV (cdash3);
M ON X (a1);
M ON W (a2);
M ON XW (a3);
MODEL CONSTRAINT:
NEW(LOW_W MED_W HIGH_W LOW_V MED_V HIGH_V ...);
LOW_W = -1; ... HIGH_V = 1; ...
ILOW_LOV = a1*b1 + a3*b1*LOW_W + a1*b2*LOW_V + a3*b2*LOW_W*LOW_V; ... IHIW_HIV = ...;
DIR_LOWV = cdash1 + cdash3*LOW_V; ... DIR_HIV = ...;
TLOW_LOV = ILOW_LOV + DIR_LOWV; ... THIW_HIV = ...;
PLOT(...);
LOOP(XVAL,-3,3,0.1);
PLOW_LOV = ILOW_LOV*XVAL; ... PHIW_HIV = IHIW_HIV*XVAL;
PLOT: TYPE = plot2;
OUTPUT: CINT;