Mplus model1alatent 模型讲解

来自图书《MPlus中介调节模型》

使用Mplus进行简单调节效应分析

  • 理论模型
  • 数学模型
  • 数学推导
  • 代码解读

理论模型

数学模型

数学公式1

Y = b0 + b1X + b2W + b3XW

数学公式2

Y = b0 + b1X + b2W + b3XW
Y = (b0 + b2W) + (b1 + b3W)X

数学公式3

Y = b0 + b1X + b2W + b3XW
Y = (b0 + b2W) + (b1 + b3W)X
b1 + b3W

代码解读1

USEVARIABLES = X1 X2 X3 X4 W1 W2 W3 W4 Y1 Y2 Y3 Y4;

代码解读2

USEVARIABLES = X1 X2 X3 X4 W1 W2 W3 W4 Y1 Y2 Y3 Y4;
ANALYSIS:

代码解读3

USEVARIABLES = X1 X2 X3 X4 W1 W2 W3 W4 Y1 Y2 Y3 Y4;
ANALYSIS:
TYPE = GENERAL RANDOM;

代码解读4

USEVARIABLES = X1 X2 X3 X4 W1 W2 W3 W4 Y1 Y2 Y3 Y4;
ANALYSIS:
TYPE = GENERAL RANDOM;
ESTIMATOR = ML;

代码解读5

USEVARIABLES = X1 X2 X3 X4 W1 W2 W3 W4 Y1 Y2 Y3 Y4;
ANALYSIS:
TYPE = GENERAL RANDOM;
ESTIMATOR = ML;
ALGORITHM = INTEGRATION;

代码解读6

USEVARIABLES = X1 X2 X3 X4 W1 W2 W3 W4 Y1 Y2 Y3 Y4;
ANALYSIS:
TYPE = GENERAL RANDOM;
ESTIMATOR = ML;
ALGORITHM = INTEGRATION;
MODEL:

代码解读7

USEVARIABLES = X1 X2 X3 X4 W1 W2 W3 W4 Y1 Y2 Y3 Y4;
ANALYSIS:
TYPE = GENERAL RANDOM;
ESTIMATOR = ML;
ALGORITHM = INTEGRATION;
MODEL:
X BY X1 X2 X3 X4;

代码解读8

USEVARIABLES = X1 X2 X3 X4 W1 W2 W3 W4 Y1 Y2 Y3 Y4;
ANALYSIS:
TYPE = GENERAL RANDOM;
ESTIMATOR = ML;
ALGORITHM = INTEGRATION;
MODEL:
X BY X1 X2 X3 X4;
W BY W1* W2 W3 W4;

代码解读9

USEVARIABLES = X1 X2 X3 X4 W1 W2 W3 W4 Y1 Y2 Y3 Y4;
ANALYSIS:
TYPE = GENERAL RANDOM;
ESTIMATOR = ML;
ALGORITHM = INTEGRATION;
MODEL:
X BY X1 X2 X3 X4;
W BY W1* W2 W3 W4;
Y BY Y1 Y2 Y3 Y4;

代码解读10

USEVARIABLES = X1 X2 X3 X4 W1 W2 W3 W4 Y1 Y2 Y3 Y4;
ANALYSIS:
TYPE = GENERAL RANDOM;
ESTIMATOR = ML;
ALGORITHM = INTEGRATION;
MODEL:
X BY X1 X2 X3 X4;
W BY W1* W2 W3 W4;
Y BY Y1 Y2 Y3 Y4;
W@1;

代码解读11

USEVARIABLES = X1 X2 X3 X4 W1 W2 W3 W4 Y1 Y2 Y3 Y4;
ANALYSIS:
TYPE = GENERAL RANDOM;
ESTIMATOR = ML;
ALGORITHM = INTEGRATION;
MODEL:
X BY X1 X2 X3 X4;
W BY W1* W2 W3 W4;
Y BY Y1 Y2 Y3 Y4;
W@1;
XW | X XWITH W;

代码解读12

USEVARIABLES = X1 X2 X3 X4 W1 W2 W3 W4 Y1 Y2 Y3 Y4;
ANALYSIS:
TYPE = GENERAL RANDOM;
ESTIMATOR = ML;
ALGORITHM = INTEGRATION;
MODEL:
X BY X1 X2 X3 X4;
W BY W1* W2 W3 W4;
Y BY Y1 Y2 Y3 Y4;
W@1;
XW | X XWITH W;
Y ON X (b1);

代码解读13

USEVARIABLES = X1 X2 X3 X4 W1 W2 W3 W4 Y1 Y2 Y3 Y4;
ANALYSIS:
TYPE = GENERAL RANDOM;
ESTIMATOR = ML;
ALGORITHM = INTEGRATION;
MODEL:
X BY X1 X2 X3 X4;
W BY W1* W2 W3 W4;
Y BY Y1 Y2 Y3 Y4;
W@1;
XW | X XWITH W;
Y ON X (b1);
Y ON W (b2);

代码解读14

USEVARIABLES = X1 X2 X3 X4 W1 W2 W3 W4 Y1 Y2 Y3 Y4;
ANALYSIS:
TYPE = GENERAL RANDOM;
ESTIMATOR = ML;
ALGORITHM = INTEGRATION;
MODEL:
X BY X1 X2 X3 X4;
W BY W1* W2 W3 W4;
Y BY Y1 Y2 Y3 Y4;
W@1;
XW | X XWITH W;
Y ON X (b1);
Y ON W (b2);
Y ON XW (b3);

代码解读15

USEVARIABLES = X1 X2 X3 X4 W1 W2 W3 W4 Y1 Y2 Y3 Y4;
ANALYSIS:
TYPE = GENERAL RANDOM;
ESTIMATOR = ML;
ALGORITHM = INTEGRATION;
MODEL:
X BY X1 X2 X3 X4;
W BY W1* W2 W3 W4;
Y BY Y1 Y2 Y3 Y4;
W@1;
XW | X XWITH W;
Y ON X (b1);
Y ON W (b2);
Y ON XW (b3);
MODEL CONSTRAINT:

代码解读16

USEVARIABLES = X1 X2 X3 X4 W1 W2 W3 W4 Y1 Y2 Y3 Y4;
ANALYSIS:
TYPE = GENERAL RANDOM;
ESTIMATOR = ML;
ALGORITHM = INTEGRATION;
MODEL:
X BY X1 X2 X3 X4;
W BY W1* W2 W3 W4;
Y BY Y1 Y2 Y3 Y4;
W@1;
XW | X XWITH W;
Y ON X (b1);
Y ON W (b2);
Y ON XW (b3);
MODEL CONSTRAINT:
NEW(LOW_W MED_W HIGH_W SIMP_LO SIMP_MED SIMP_HI);

代码解读17

USEVARIABLES = X1 X2 X3 X4 W1 W2 W3 W4 Y1 Y2 Y3 Y4;
ANALYSIS:
TYPE = GENERAL RANDOM;
ESTIMATOR = ML;
ALGORITHM = INTEGRATION;
MODEL:
X BY X1 X2 X3 X4;
W BY W1* W2 W3 W4;
Y BY Y1 Y2 Y3 Y4;
W@1;
XW | X XWITH W;
Y ON X (b1);
Y ON W (b2);
Y ON XW (b3);
MODEL CONSTRAINT:
NEW(LOW_W MED_W HIGH_W SIMP_LO SIMP_MED SIMP_HI);
LOW_W = -1; MED_W = 0; HIGH_W = 1;

代码解读18

USEVARIABLES = X1 X2 X3 X4 W1 W2 W3 W4 Y1 Y2 Y3 Y4;
ANALYSIS:
TYPE = GENERAL RANDOM;
ESTIMATOR = ML;
ALGORITHM = INTEGRATION;
MODEL:
X BY X1 X2 X3 X4;
W BY W1* W2 W3 W4;
Y BY Y1 Y2 Y3 Y4;
W@1;
XW | X XWITH W;
Y ON X (b1);
Y ON W (b2);
Y ON XW (b3);
MODEL CONSTRAINT:
NEW(LOW_W MED_W HIGH_W SIMP_LO SIMP_MED SIMP_HI);
LOW_W = -1; MED_W = 0; HIGH_W = 1;
SIMP_LO = b1 + b3*LOW_W; SIMP_MED = b1 + b3*MED_W; SIMP_HI = b1 + b3*HIGH_W;

代码解读19

USEVARIABLES = X1 X2 X3 X4 W1 W2 W3 W4 Y1 Y2 Y3 Y4;
ANALYSIS:
TYPE = GENERAL RANDOM;
ESTIMATOR = ML;
ALGORITHM = INTEGRATION;
MODEL:
X BY X1 X2 X3 X4;
W BY W1* W2 W3 W4;
Y BY Y1 Y2 Y3 Y4;
W@1;
XW | X XWITH W;
Y ON X (b1);
Y ON W (b2);
Y ON XW (b3);
MODEL CONSTRAINT:
NEW(LOW_W MED_W HIGH_W SIMP_LO SIMP_MED SIMP_HI);
LOW_W = -1; MED_W = 0; HIGH_W = 1;
SIMP_LO = b1 + b3*LOW_W; SIMP_MED = b1 + b3*MED_W; SIMP_HI = b1 + b3*HIGH_W;
PLOT(LOMOD MEDMOD HIMOD);

代码解读20

USEVARIABLES = X1 X2 X3 X4 W1 W2 W3 W4 Y1 Y2 Y3 Y4;
ANALYSIS:
TYPE = GENERAL RANDOM;
ESTIMATOR = ML;
ALGORITHM = INTEGRATION;
MODEL:
X BY X1 X2 X3 X4;
W BY W1* W2 W3 W4;
Y BY Y1 Y2 Y3 Y4;
W@1;
XW | X XWITH W;
Y ON X (b1);
Y ON W (b2);
Y ON XW (b3);
MODEL CONSTRAINT:
NEW(LOW_W MED_W HIGH_W SIMP_LO SIMP_MED SIMP_HI);
LOW_W = -1; MED_W = 0; HIGH_W = 1;
SIMP_LO = b1 + b3*LOW_W; SIMP_MED = b1 + b3*MED_W; SIMP_HI = b1 + b3*HIGH_W;
PLOT(LOMOD MEDMOD HIMOD);
LOOP(XVAL,-3,3,0.1);

代码解读21

USEVARIABLES = X1 X2 X3 X4 W1 W2 W3 W4 Y1 Y2 Y3 Y4;
ANALYSIS:
TYPE = GENERAL RANDOM;
ESTIMATOR = ML;
ALGORITHM = INTEGRATION;
MODEL:
X BY X1 X2 X3 X4;
W BY W1* W2 W3 W4;
Y BY Y1 Y2 Y3 Y4;
W@1;
XW | X XWITH W;
Y ON X (b1);
Y ON W (b2);
Y ON XW (b3);
MODEL CONSTRAINT:
NEW(LOW_W MED_W HIGH_W SIMP_LO SIMP_MED SIMP_HI);
LOW_W = -1; MED_W = 0; HIGH_W = 1;
SIMP_LO = b1 + b3*LOW_W; SIMP_MED = b1 + b3*MED_W; SIMP_HI = b1 + b3*HIGH_W;
PLOT(LOMOD MEDMOD HIMOD);
LOOP(XVAL,-3,3,0.1);
LOMOD = (b1 + b3*LOW_W)*XVAL; MEDMOD = (b1 + b3*MED_W)*XVAL; HIMOD = (b1 + b3*HIGH_W)*XVAL;

代码解读22

USEVARIABLES = X1 X2 X3 X4 W1 W2 W3 W4 Y1 Y2 Y3 Y4;
ANALYSIS:
TYPE = GENERAL RANDOM;
ESTIMATOR = ML;
ALGORITHM = INTEGRATION;
MODEL:
X BY X1 X2 X3 X4;
W BY W1* W2 W3 W4;
Y BY Y1 Y2 Y3 Y4;
W@1;
XW | X XWITH W;
Y ON X (b1);
Y ON W (b2);
Y ON XW (b3);
MODEL CONSTRAINT:
NEW(LOW_W MED_W HIGH_W SIMP_LO SIMP_MED SIMP_HI);
LOW_W = -1; MED_W = 0; HIGH_W = 1;
SIMP_LO = b1 + b3*LOW_W; SIMP_MED = b1 + b3*MED_W; SIMP_HI = b1 + b3*HIGH_W;
PLOT(LOMOD MEDMOD HIMOD);
LOOP(XVAL,-3,3,0.1);
LOMOD = (b1 + b3*LOW_W)*XVAL; MEDMOD = (b1 + b3*MED_W)*XVAL; HIMOD = (b1 + b3*HIGH_W)*XVAL;
PLOT: TYPE = plot2;

代码解读23

USEVARIABLES = X1 X2 X3 X4 W1 W2 W3 W4 Y1 Y2 Y3 Y4;
ANALYSIS:
TYPE = GENERAL RANDOM;
ESTIMATOR = ML;
ALGORITHM = INTEGRATION;
MODEL:
X BY X1 X2 X3 X4;
W BY W1* W2 W3 W4;
Y BY Y1 Y2 Y3 Y4;
W@1;
XW | X XWITH W;
Y ON X (b1);
Y ON W (b2);
Y ON XW (b3);
MODEL CONSTRAINT:
NEW(LOW_W MED_W HIGH_W SIMP_LO SIMP_MED SIMP_HI);
LOW_W = -1; MED_W = 0; HIGH_W = 1;
SIMP_LO = b1 + b3*LOW_W; SIMP_MED = b1 + b3*MED_W; SIMP_HI = b1 + b3*HIGH_W;
PLOT(LOMOD MEDMOD HIMOD);
LOOP(XVAL,-3,3,0.1);
LOMOD = (b1 + b3*LOW_W)*XVAL; MEDMOD = (b1 + b3*MED_W)*XVAL; HIMOD = (b1 + b3*HIGH_W)*XVAL;
PLOT: TYPE = plot2;
OUTPUT: CINT;

资源汇总

  • 本视频讲义地址: https://mlln.cn/mplus-model-templates/model1alatent.html
  • 图书《MPlus中介调节模型》打包下载: 点击下载
  • 图书《MPlus中介调节模型》在线看: 点击查看
  • 视频教程: 点击这里打开视频
  • Mplus 模型模板教程列表: https://mlln.cn/mplus-model-templates
  • 统计咨询: https://wx.zsxq.com/group/88888188828842